Scalar top signal: efficiency versus purity as a vehicle for detector optimization

A. Finch, A. Sopczak (Lancaster University)
M. Carena, A. Freitas, C. Milsténe (Fermilab)
H. Nowak (DESY Zeuthen)

- Introduction
- Vertex Detector c-Tagging
- Small Stop-Neutralino Mass Differences (Dark Matter Interpretations)
- Variation of Vertex Detector Design
- Conclusions

Introduction

Large challenge to develop a vertex detector for a future LC. Key aspects:

- Distance to interaction point of innermost layer (radiation hardness, beam background).
- Material absorption length (multiple scattering).
- Tagging performance.

LCWS'05, Vienna

LCFI Collaboration: Development of a CCD detector for a future LC. This CCD detector is implemented in c-tagging simulations.

5 CCD layers at 15, 26, 37, 48 and 60 mm. Each layer $< 0.1\% X_0$.

c-Quark Tagging: a Benchmark Reaction

Signal: Two charm jets and missing energy.

Benchmark reaction in the Supersymmetry framework: $e^+e^- \rightarrow \tilde{t}_1 \bar{\tilde{t}_1} \rightarrow c \tilde{\chi}_1^0 \bar{c} \tilde{\chi}_1^0$

Small Stop-Neutralino Mass Difference Studies

Motivations:

- Challenge for Vertex Detector
- Dark Matter (Carena, Balázs, Wagner '04): $\tilde{\chi}_1^0$ is Cold Dark Matter (CDM) candidate. Correct CDM rate for small $\tilde{t}_1 \tilde{\chi}_1^0$ mass difference (co-annihilation).

- Green: Relic density consistent with WMAP
- Co-annihilation for small $\Delta m = m_{\text{stop}} - m_{\text{neutralino}_1}$
- Difficult for searches at the Tevatron and LHC

LC	WS'05, V	ienna Signal(c=	=0.5) and Background				
	Proce	ess	Cross-section [pb]				
	$P(e^{-}$	$)/P(e^{+})$	0/0	-80%/+60%	+80%/-60%		
	$\tilde{t}_1 \tilde{t}_1^*$	$m_{\tilde{t}_1} = 120 \text{ GeV}$	0.115	0.153	0.187		
		$m_{\tilde{t}_1} = 140 \text{ GeV}$	0.093	0.124	0.151		
		$m_{\tilde{t}_1} = 180 \text{ GeV}$	0.049	0.065	0.079		
		$m_{\tilde{t}_1} = 220 \text{ GeV}$	0.015	0.021	0.026		
	$W^+ W$	V^{-}	8.55	24.54	0.77		
	ZZ		0.49	1.02	0.44		
	$We\nu$		6.14	10.57	1.82		
	eeZ		7.51	8.49	6.23		
	$q\bar{q}, q$	$\neq t$	13.14	25.35	14.85		
	$t\bar{t}$		0.55	1.13	0.50		
	2-pho	pton, $p_{\rm t} > 5 {\rm ~GeV}$	936				

Reduction of Background

- 1. Exactly 2 jets. Durham algorithm with jet resolution parameter $y_{\rm cut} = 0.003 \times \sqrt{s}/E_{\rm vis}$, tuned to most effectively reject four-jet W⁺W⁻.
- 2. $E_{\rm vis} < 0.4\sqrt{s}$ to reduce W⁺W⁻, ZZ and di-quark events. In addition, 70 GeV $< m_{\rm jet,inv} < 90$ GeV reduces large We ν background.
- 3. $\cos \phi_{acol} > -0.9$ reduces $e^+e^- \rightarrow q\bar{q}$ and $\gamma \gamma \rightarrow q\bar{q}$ processes with back-to-back topology.
- 4. $|\cos \theta_{\text{thrust}}| < 0.7$ reduces events with W bosons further.
- 5. Remaining two-photon background is almost completely removed by $p_{\rm t} > 12 {\rm ~GeV}.$
- 6. c-quark tagging improves the signal-to-background ratio further. Neural network optimized for small Δm . And, excluded invariant jet mass window increased to 60 GeV $< m_{\rm jet,inv} < 90$ GeV.

Remaining Background Events

		After							Scaled to
Process	Total	presel.	cut 1	cut 2	cut 3	cut 4	cut 5	cut 6	$500{\rm fb}^{-1}$
W^+W^-	$210,\!000$	2814	827	28	25	14	14	8	145
ZZ	$30,\!000$	2681	1987	170	154	108	108	35	257
$We\nu$	$210,\!000$	53314	38616	4548	3787	1763	1743	345	5044
eeZ	$210,\!000$	51	24	20	11	6	3	2	36
$q\bar{q}, q \neq t$	$350,\!000$	341	51	32	19	13	10	8	160
$t\overline{t}$	180,000	2163	72	40	32	26	26	25	38
2-photon	8×10^6	4061	3125	3096	533	402	0	0	<164

LCWS'05, Vienna Signal Efficiency(%) and Events

		After							Scaled to
(GeV)	Total	presel.	cut 1	cut 2	cut 3	cut 4	cut 5	cut 6	$500\mathrm{fb}^{-1}$
$m_{\tilde{t}_1} = 140$									
$\Delta m = 20$	50,000	68.5	48.8	42.1	33.4	27.9	27.3	20.9	9720
$\Delta m = 40$	50,000	71.8	47.0	40.2	30.3	24.5	24.4	10.1	4700
$\Delta m = 80$	50,000	51.8	34.0	23.6	20.1	16.4	16.4	10.4	4840
$m_{\tilde{t}_1} = 180$									
$\Delta m = 20$	$25,\!000$	68.0	51.4	49.4	42.4	36.5	34.9	28.4	6960
$\Delta m = 40$	$25,\!000$	72.7	50.7	42.4	35.5	28.5	28.4	20.1	4925
$\Delta m = 80$	$25,\!000$	63.3	43.0	33.4	29.6	23.9	23.9	15.0	3675
$m_{\tilde{t}_1} = 220$									
$\Delta m = 20$	$10,\!000$	66.2	53.5	53.5	48.5	42.8	39.9	34.6	2600
$\Delta m = 40$	10,000	72.5	55.3	47.0	42.9	34.3	34.2	24.2	1815
$\Delta m = 80$	10,000	73.1	51.6	42.7	37.9	30.3	30.3	18.8	1410

Signal Efficiency (in %)

Δm	$m_{\tilde{t}_1} = 120 \text{ GeV}$	$140 { m GeV}$	$180 { m GeV}$	$220 { m GeV}$
$80 { m GeV}$		10	15	19
$40 \mathrm{GeV}$		10	20	24
$20 { m GeV}$	17	21	28	35
$10 { m GeV}$	19	20	19	35
$5~{\rm GeV}$	2.5	1.1	0.3	0.1

For $\Delta m < 10$ GeV reduced efficiency due to $p_{\rm t} > 12$ GeV requirement.

André Sopczak

Determination of Stop Mass and Mixing Angle

Systematic and Statistical Uncertainties

- $\delta m_{\tilde{\chi}^0_1} = 0.1 \text{ GeV}$
- Polarization: $\delta P(e^{\pm})/P(e^{\pm}) = 0.5\%$
- Background rate $\delta B/B = 0.3\%$
- Scalar top hadronization and fragmentation: <1%
- c-quark tagging: < 0.5%
- Detector calibration: < 0.5%
- Beamstrahlung: < 0.02%

Sum of systematic uncertainty: 1.3%(l), 1.2% (r) reduces to 0.8%. Statistical uncertaity: 0.8%.

Typical small Δm (15 GeV) parameter point: Result for 250 fb⁻¹ for each polarization: $\Delta m_{\tilde{t}_1} = 122.5 \pm 1.0 \text{ GeV} \qquad |\cos \theta_{\tilde{t}}| < 0.074$

Dark Matter Prediction

Included all parameters and their errors (e.g. $\tilde{\chi}_1^0/\tilde{\chi}_1^+$ measurements). Stop mass uncertainty is dominant for CDM co-annihilation precision.

WMAP: 1, 2σ bands. LC: precision.

Vertex detector absorption length:

- Normal TDR)
- Double thickness

Number of vertex detector layers:

- 5 layers innermost layer at 15 mm (like TDR)
- 4 layers innermost layer at 26 mm (Layer 1 removed)

Recall: SPS-5 Varying Vertex Detector Design

Same result observed! Vertex detector absorption length:

- Normal thickness (TESLA TDR)
- Double thickness
- Number of vertex detector layers:
 - 5 layers innermost layer at 15 mm (like TDR)
 - 4 layers innermost layer at 26 mm (Layer 1 removed)

For SPS-5 parameters (220.7 GeV): (220.7 GeV):

		Remaining background events			
Thickness	Layers	(12% Signal)	(25% Signal)		
Normal	5	68	2300		
Normal	4	82	2681		
Double	5	69	2332		
Double	4	92	2765		

• Larger sensitivity on CCD design variations expected for reactions with smaller visible energy, e.g. small stop-neutralino mass difference!

Conclusions

- c-quark tagging as a benchmark for vertex detectors. In Supersymmetry: Scalar top quarks.
- SIMDET detector simulation: LCFI vertex detector.
- c-tagging reduces background by about a factor 2 to 3 for $\tilde{\chi}_1^0 c \tilde{\chi}_1^0 \bar{c}$.
- Simulations for small stop-neutralino mass difference, motivated by vertex detector studies and cosmology.
- Background depends on vertex detector design.
- Vertex detector design variation: large effect on radius of inner most layer.
- Plan: Small Δm analysis refinements, further variations of detector design.