Background Studies for the Large Detector Concept

Guinea Pig Meets Mokka

Adrian Vogel DESY FLC

Background at the ILC

e⁺e⁻ pairs are the main source of background

- created through beam-beam interaction
- smash into forward calorimeters and quadrupoles
- create neutrons, photons, and charged particles
- Secondary particles produce detector hits
 - charged tracks
 - neutron-proton collisions in the TPC gas
 - nuclear interactions more photons
 - Compton scattering, photon conversion

Neutrons can cause silicon bulk damage in the VTX

Simulation Tools

Guinea Pig

- simulates beam-beam interaction
- generates (among others) e⁺e⁻ pair particles

Brahms

- simulates interaction of particles with the detector
- based on old Geant 3, Fortran

Mokka

- successor of Brahms, under continuous development
- based on state-of-the-art Geant 4, C++

Detector Geometries – TESLA TDR

- Head-on
- LAT (red)
- Low-Z absorber
 Ø = 24 mm
- LCAL (blue)
- Quadrupoles
 L* = 3.00 m

Detector Geometries – Stahl Layout

- Head-on or 2 mrad
- LumiCal (red)
- Low-Z absorber
 Ø = 26 mm
- BeamCal (blue)
- Quadrupoles $L^* = 4.05 \,\mathrm{m}$

Detector Geometries – Crossing Angle

- 20 mrad
- LumiCal (red)
- Low-Z absorber $Ø_1 = 26 \text{ mm}$ $Ø_2 = 50 \text{ mm}$
- BeamCal (blue)
- Quadrupoles $L^* = 4.05 \,\mathrm{m}$
- with or without additional DID

Magnetic Field Maps

Plain solenoidSolenoid with DIDRealistic field maps (plus simplified quadrupoles)

Adrian Vogel

Running Mokka

Input

- TESLA TDR beam parameters
- Guinea Pig pairs from 5 simulated BX
- different geometries and magnetic fields
- neutron production enabled in Geant 4
- standard range cuts

Output

- write out hits on all detectors to LCIO files
- monitor all particles entering the TPC (for a future dedicated, detailed simulation)

Results – Hits on the Vertex Detector

Adrian Vogel

Results – Backscattering from the Mask

Low-energy particles

- enter IR through holes of the BeamCal
- follow magnetic field

Without DID:

hit VTX layers 2 and 3

With DID:

- downstream particles miss the VTX (mostly)
- upstream particles return to VTX center

Results – Comparison with Brahms

Qualitative agreement

- backscattering is a geometrical effect
- Brahms and Mokka have similar geometries

Quantitative differences

- Mokka has new VTX model (larger sensitive area)
- neutron contributions
- different cut mechanisms

Brahms (K. Büßer at Snowmass)

Results – TPC Hits

Stahl layout, TDR gas: 5500 \pm 900 Mokka hits/BX Stahl layout, P10 gas: 5000 \pm 600 Mokka hits/BX

Adrian Vogel

ILC Beam Parameters – Pairs

ILC Beam Parameters – Pair Energies

Adrian Vogel

ILC Beam Parameters – Hits on the VTX

Adrian Vogel

Tools are developing

- Mokka has forward geometries and magnetic fields
- Brahms results can be reproduced (qualitatively)

Relate simulation results to detector tolerances

- hits on the VTX can be used as a benchmark
- but: TPC needs a more sophisticated simulation
- better understanding of neutron behaviour needed
- get more statistics (unleash the power of the Grid!)

Different geometries and beam parameters

• better be prepared for a factor of $\mathcal{O}(5)$...