

Orbit Correction, including transverse wake effects in the ILC Positron Source

James Jones

&

Duncan Scott

Beam and Undulator vessel Assumptions

- For the positron undulator vessel we are assuming (realistic):
 - 5.7mm diameter
 - A Copper Vessel
 - Surface Roughness Ra ~100nm
 - Temperature 4.2K
- The ILC bunch Parameters (Gaussian Bunch):

	rms Length (µm)	N electrons	Energy (GeV)
Maximum	500	2 10 ¹⁰	150
Nominal	300	2 10 ¹⁰	150
Minimum	150	1 10 ¹⁰	150

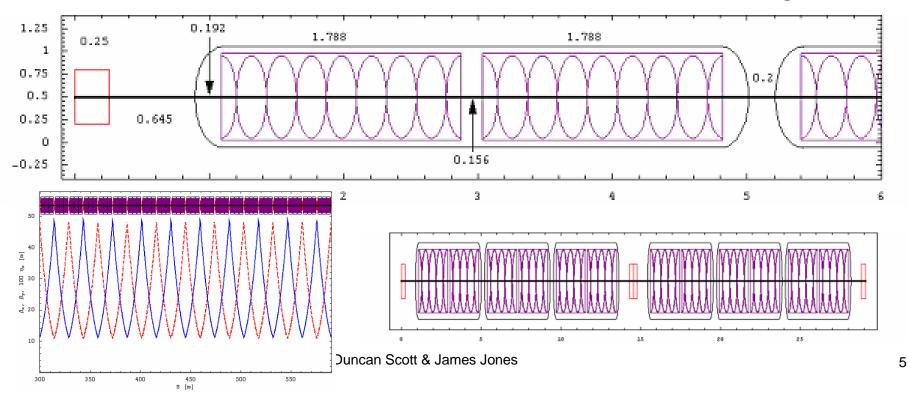
Undulator Trans Wakefield Kicks & Comparison with BDS

- From the beam and vessel parameters the resistive wall transverse Wake kick can be calculated
- DC, AC and Anomalous Skin Effect Included (important at low temperatures, probably not in the BDS)
- NB this is for copper at 77K at 4.2K the kick is probably less

Bunch Length	(µm)	150	300	500
Und Trans Kick	$(eV \ \mu m^{-1} \ m^{-1})$	0.22	0.27	0.21
BDS Trans Kick	$(eV \ \mu m^{-1} \ m^{-1})$??	0.11	??
BDS Length	m	1600		
Und Length	m		200	

See Beam Delivery Meeting: May 16, 2006,

http://www-project.slac.stanford.edu/lc/bdir/Meetings/beamdelivery/2006-05-16/index.htm


Assumptions for Tracking Study & Further Work

- We assumed a kick of 6 eV µm-1 m-1 a factor of 23 too big
- Further work will look at the geometric kicks from the undulator transitions and photon collimators
- A 200m long undulator is for **polarised positrons** with the undulator at 150GeV point.
- For un-polarised positrons the undulator length is:
 - ~70m @ 150GeV
 - (~25m @ 250GeV)
- Comparing the baseline ILC undulator to the BDS the Kick is ~2x as large but the length is ~23 times less
- (So the undulator is about a factor of ten easier than the BDS?)

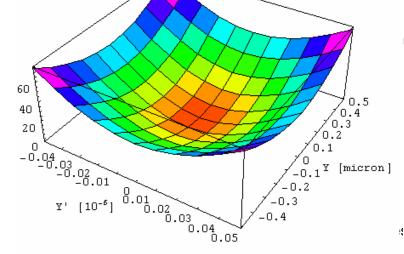
Modified Undulator Lattice

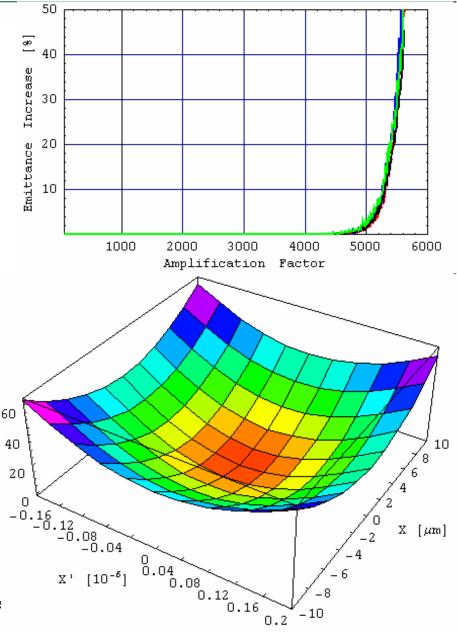
- Packing density of NLC design is too low
 - Line has only 143m of undulator in 246m of line
- Assume 3 cryo-modules between quads, 2 undulators per cryo-module
 - Generate 214m of undulator for 293m line length

Set-up

Wake fields modelled as linear matrix elements

(1	0	0	0	0	0)
kw	lake, x	1	0	0	0	0
	0	0	1	0	0	0
	0	0	k _{Wake,y}	1	0	0
	0	0	0	0	1	0
l	0	0	0	0	0	1)

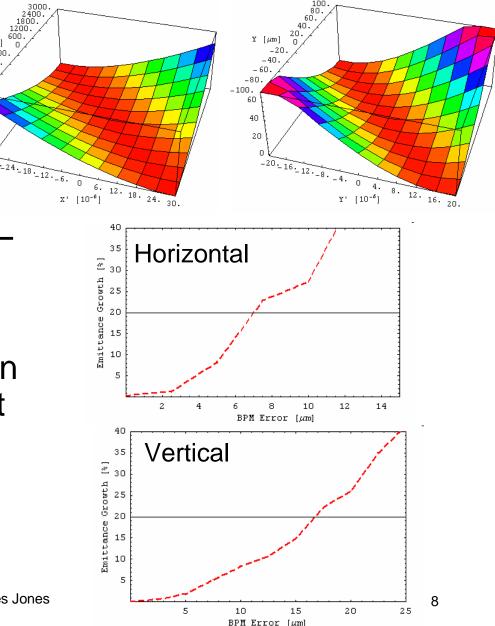

- Assume BPMs and Correctors at Quads (zero-length)
- Correct orbit using SVD-based correction system
 - 21 correctors & 21 BPMs
 - Use half the number of singular values (this has not been optimised!)
- Track 500 particle beam to determine emittance growth



• Assumed 0.27eV/micron/m.

ASTeC

- How strong does it have to be disrupt the beam?
 - Over 5000 times larger!
- Also looked at incoming trajectory errors in both planes
- Tolerances are tight with no correction



With correction

- With "perfect" trajectory correction the tolerances are greatly relaxed.
- No dispersion Correction
- If we look at the BPM error tolerance,
 - Error on BPM readout can be quad-bpm misalignment or BPM read error
- Dominated by dispersion corrected only in Vertical Plane

600

X [μm]

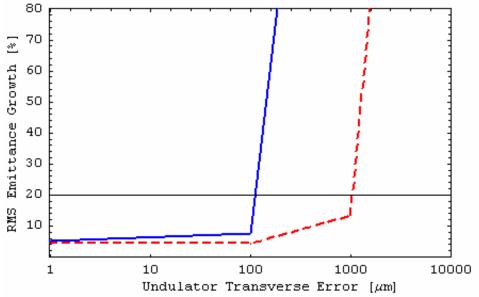
- 1200.

- 1800

-2400

60

40


20

- 600

Undulator Alignment – with 6eV/micron/m!

- The tolerance on the vertical and horizontal alignment of the undulator is also tight, considering they are in cryomodules – 100microns or less
- Assume only orbit correction, no movers on cryo-modules etc.

• Simulations currently time limited – can't do this in MAD

• Custom built matrix tracking code – very slow.

Conclusions

- The Undulator Wakes don't seem to be a **big** problem, though they do have an effect. Tolerances dominated by correction systems.
- Still...
 - Need to analyse the tolerances on the in-cryo-module alignment
 - Ensure correction algorithms for undulator are integrated with rest of linac
 - Make sure the wakefields are as small as we think they are!