Neutralino relic density with CP violation

> SABINE KRAML CERN & OeAW

in collaboration with G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov

ECFA-ILC workshop, Vienna, 14-17 Nov 2005

Neutralino relic density

The typical O(100 GeV) WIMP has a too large relic density. \rightarrow need specific mechanism for efficient annihilation!

bino LSP, bulk region light $\tilde{\chi}_1^0$ and \tilde{f}

LSP with strong higgsino component

Higgs funnel $m_H \sim 2 m_{ ilde{\chi}_1^0}$

Co-annihilation LSP–NLSP mass difference

• MSSM -ino masses and trilinear couplings can be complex:

 $M_1=|M_1|e^{i\pmb{\phi_1}}$, $\mu=|\mu|e^{i\pmb{\phi_\mu}}$, $A_f=|A_f|e^{i\pmb{\phi_f}}$

- MSSM -ino masses and trilinear couplings can be complex: $M_1=|M_1|e^{i\phi_1},\,\mu=|\mu|e^{i\phi_\mu},\,A_f=|A_f|e^{i\phi_f}$
- Sparticle production and decay rates depend on phases. \rightarrow Expect important influence also on $\langle \sigma v \rangle$

- MSSM -ino masses and trilinear couplings can be complex: $M_1 = |M_1|e^{i\phi_1}, \mu = |\mu|e^{i\phi_{\mu}}, A_f = |A_f|e^{i\phi_f}$
- Sparticle production and decay rates depend on phases. \rightarrow Expect important influence also on $\langle \sigma v \rangle$
- Caution: also the masses depend on the phases!
 → Need to disentangle effects in kinematics and couplings

- MSSM -ino masses and trilinear couplings can be complex: $M_1 = |M_1|e^{i\phi_1}, \mu = |\mu|e^{i\phi_{\mu}}, A_f = |A_f|e^{i\phi_f}$
- Sparticle production and decay rates depend on phases. \rightarrow Expect important influence also on $\langle \sigma v \rangle$
- Caution: also the masses depend on the phases!
 → Need to disentangle effects in kinematics and couplings
- For example, $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to H \to \dots$ does not occur at v = 0 if H is a pure scalar.

Non-zero phases can give the *H* some pseudoscalar component (loop-induced CPV in Higgs sector).

However, they also change the Higgs masses, and Ωh^2 is very sensitive to $\Delta m_{\tilde{\chi}^0 H} = m_H - 2m_{\tilde{\chi}^0_1}$.

Previous studies

of neutralino relic density with CPV

- T. Nihei, "Suppression of the neutralino relic density with supersymmetric CP violation", hep-ph/0508285.
- M. E. Gomez, et al., "WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases", hep-ph/0506243.
- C. Balazs, et al., "The supersymmetric origin of matter", hep-ph/0412264.
- M. Argyrou, et al., "Partial wave treatment of supersymmetric dark matter in the presence of CP-violation", hep-ph/0404286.
- T. Nihei and M. Sasagawa, "Relic density and elastic scattering cross sections of the neutralino in the MSSM with CP-violating phases", hep-ph/0404100.
- P. Gondolo and K. Freese, "CP-violating effects in neutralino scattering and annihilation", hep-ph/9908390.

$\texttt{micrOMEGAs} \in \mathbf{CPV}$

- We have implemented the general MSSM Lagrangian with CP-violating phases in CALCHEP / micrOMEGAs*
- Higgs and sparticle masses and mixing matrices are computed with CPsuperH[†]
- Fully automatical calculation of the relic density
- All possible channels included !
- No EDM constraints yet

* micrOMEGAs: G. Bélanger et al., Comput. Phys. Commun. 149 (2002) 103, hep-ph/0112278.

[†] CPsuperH: J. S. Lee et al., Comput. Phys. Commun. 156 (2004) 283, hep-ph/0307377. NB: Thanks to JSL for helpful discussions!

RESULTS

(FOR ANNIHILATION THROUGH HIGGS)

Scenario 1:

$M_1 = 150 \; { m GeV}, \; M_2 = 300 \; { m GeV}, \; \mu = 500 \; { m GeV}$

(bino-like LSP, annihilation through Higgs, small Higgs mixing)

 $M_1 = 150 \; {
m GeV}, \; M_2 = 300 \; {
m GeV}, \; \mu = 500 \; {
m GeV}, \; aneta = 5$ $m_{H^+} = 340 \; {
m GeV}, \; M_{Q_3,U_3,D_3} = 500 \; {
m GeV}, \; A_t = 1200 \; {
m GeV}$

Mass	ses	s of :	SuperI	Particles
~01	:	MNE1	=	147.0
~1+	•	MC1	=	282.2
~02	:	MNE2	=	282.7
~t1	:	MSt1	=	317.8
~b1	:	MSb1	=	497.9
~03	:	MNE 3	=	503.4

```
Masses of Higgs:
mh1 = 117.94 GeV
mh2 = 331.45 GeV
mh3 = 332.27 GeV
```

```
Dark Matter candidate is ~o1
Omega=1.10E-01
```


 $M_1 = 150 \; {
m GeV}, \; M_2 = 300 \; {
m GeV}, \; \mu = 500 \; {
m GeV}, \; aneta = 5$ $m_{H^+} = 340 \; {
m GeV}, \; M_{Q_3,U_3,D_3} = 500 \; {
m GeV}, \; A_t = 1200 \; {
m GeV}$

all phases zero	phase(M1) = 90 deg		
Omega=1.10E-01	Omega=8.73E-02		
4% ~ol ~ol -> hl hl	34% ~ol ~ol -> hl hl		
6% ~ol ~ol -> Z hl	1% ~o1 ~o1 -> Z h1		
78% ~ol ~ol -> b B	46% ~ol ~ol -> b B		
10% ~o1 ~o1 -> l L	6% ~01 ~01 -> l L		
1% ~01 ~01 -> W+ W-	9% ~ol ~ol -> ₩+ ₩-		
	4% ~o1 ~o1 -> Z Z		

However, also the masses change with the phases

WMAP-allowed band in the (m_{H^+}, ϕ_t) plane

WMAP-allowed band in the (m_{H^+}, ϕ_t) plane

 \rightarrow dependence on ϕ_t is mainly a kinematic effect

WMAP-allowed band in the $(m_{H^+},\,\phi_1)$ plane

 \rightarrow dependence on ϕ_1 is due to kinematics + couplings

WMAP-allowed band in the (m_{H^+}, ϕ_1) plane

 $\Delta(\Omega h^2) \sim 50\%$

Scenario 2:

$M_1 = 150 \text{ GeV}, M_2 = 300 \text{ GeV}, \mu = 1 \text{ TeV}$

(bino-like LSP, annihilation through Higgs, LARGE Higgs mixing)

 $M_1 = 150 \; {
m GeV}, \; M_2 = 300 \; {
m GeV}, \; \mu = 1 \; {
m TeV}, \; aneta = 5$ $m_{H^+} = 334 \; {
m GeV}, \; M_{Q_3,U_3,D_3} = 500 \; {
m GeV}, \; A_t = 1200 \; {
m GeV}$

Mass	e	s of a	Super	Particles	3
~01	•	MNE1	=	149.0	
~1+	•	MC1	=	295.2	
~02	•	MNE2	=	295.2	
~t1	•	MSt1	=	342.0	
~b1	•	MSb1	=	491.7	
~03	:	MNE 3	=	1002.0	
• • • •					

Masses of Higgs: mh1 = 116.83 GeV mh2 = 324.36 GeV mh3 = 326.23 GeV

Dark Matter candidate is ~o1 Omega=1.25E-01

2 WMAP-allowed bands in the (m_{H^+}, ϕ_t) plane

2 WMAP-allowed bands in the (m_{H^+}, ϕ_t) plane

 $m_{H^+}\sim 304~{
m GeV}$

Not only position but also height of the peak depends on ϕ_t .

ϕ_t	0 °	15°	90 °
m_{H^+}	305.0	304.1	303.6
$ ilde{\chi}^0_1 ilde{\chi}^0_1 o oldsymbol{h_1}oldsymbol{h_1}$		7%	31%
$ ilde{\chi}^0_1 ilde{\chi}^0_1 o Z h_1$	10%	8%	1%
$ ilde{\chi}^0_1 ilde{\chi}^0_1 o b ar{b}$	80%	74%	52%
$ ilde{\chi}_1^0 ilde{\chi}_1^0 o au au$	10%	9%	7%
$ ilde{\chi}^0_1 ilde{\chi}^0_1 o WW$		1%	6%
$ ilde{\chi}^0_1 ilde{\chi}^0_1 ightarrow ZZ$			3%
pseudoscalar	h_3	50:50	h_2
Ωh^2	0.107	0.103	0.102

As ϕ_t increases, exchange of h_2 (s-channel) and $\tilde{\chi}^0$, $\tilde{\chi}^{\pm}$ (t-channel) becomes more important.

Other scenarios

• We are systematically investigating different scenarios:

bino, wino, higgsino LSP; mixed gaugino-higgsino scenario; co-annihilation with stops or staus; large $\tan \beta$, etc.

 Interesting phase dependences, especially if interferences of several processes occur

Conclusions

- We have implemented the CPV-MSSM in micrOMEGAs 2.0
 - Masses and mixing matrices computed with CPsuperH
 - All channels contributing to Ωh^2 automatically included
- At this workshop, I have presented results for neutralino annhilation through s-channel Higgs exchange.
- CPV phases can have large effect; interesting dependences especially if interferences of several processes occur.
- Non-trivial to disentangle effects on masses and couplings.
- Systematic analysis of different annihilation and co-annihilation scenarios is in progress.
- Need to include contraints from EDMs, etc..
- Caution: loop corrections may be equally important....