Laserwire at the ATF

Yosuke Honda 3rd Jul. /06 Oxford

- Quick introduction of optical cavity
- List of milestones we have achieved
- No new things

principle

- beam size measurement
 - scan by the mover stage of whole laser system
 - scattered photon counting
- requirements
 - thin laser width(5 μ m)
 - high effective power(100W)
- our solution
 - external optical cavity with a small waist
 - power enhancement
 - well defined laser profile

layout and e-beam condition

power enhancement

- resonance condition (L=n λ /2)
- transmission power tells the status
- enhancement factor is proportional to
 - sharpness of the peak (finesse)
 - transmission of the coupler mirror

mechanical design

diffraction limited beam

 $z_0 = rac{\pi w_0^2}{\lambda},$

laser beam stored in a cavity

- boundary condition by the mirrors
 - L, ρ define beam waist (and λ)
- if L>2 ρ , no solution (unstable resonator)

transverse modes

- m,n>0
- additional phase factor
 - resonance condition shifts
 - amount of the shift is related to w0

optics tuning

(b) after matching

measurment of laser waist

- Three methods
 - divergence of cavity transmission
 - phase difference in transverse modes
 - waist scan with electron beam
- result
- w0=11.3+-0.16um, z0=760um

Compton signal detection

- Max. energy 29MeV
- detector
 - Csl(pure): 70mm×70mm×300mm
 - leading edge: 0.56nsec
 - counting
- background
 - spent electron via intra-beam scattering
 - reduce detector aperture

optical cavity control

measurement example

- procedure
 - storage beam in DR
 - $10 \mu m$ step, 10 sec/position
 - re-fill DR

$$\sigma_e = \sqrt{\sigma_{meas}^2 - \sigma_{lw}^2}$$

multi-bunch example

- 20 bunch, 2.8 nsec spacing
- detect timing of each event

Measurement in 2004

emittance damping

 measure beam size at different timing after injection

HOM

- smaller structure in higher transverse modes
- selective excitation of TEM01 mode
 - degeneration with TEM10
 - excitation efficiency

split TEM01 and TEM10

efficient excitation of TEM01

look with a micro scope

example of beam measurement

- fitting
 - both laser size, e-beam size are free parameters.

$$\left(\frac{\sigma_{lw}^2}{\sigma_e^2 + \sigma_{lw}^2} \cdot y^2 + \sigma_e^2\right) \exp\left(-\frac{y^2}{2(\sigma_e^2 + \sigma_{lw}^2)}\right)$$

mode-lock laser case

- inside the cavity of mode lock laser
 - many longitudinaklmodes
 - phase relation of the modes makes a short laser pulse
- external cavity
 - also has many longitudinal modes
 - all laser modes are accepted if laser cavity lenghth = external cavity length

time domain round-trip time pulse repetition

- need to control at the same time
 - laser repetition
 - cavity round trip time
 - cavity resonance
 - e-beam timing
 - laser waist size

bunch repetition

1st model for pulsed laserwire

- cavity length=21cm (714MHz), two folded 357MHz cavity
- 1064nm, passive mode-lock(SESAM)

Beam	
repetition	357 MHz (2.8 ns)
bunch length	25 ps (rms)
Laser	
pulse repetition	357 MHz
pulse length	7.3 ps (FWHM)
power	500 mW
wave length	1064 nm
Cavity	
mirror reflectance	99.7 %
mirror curvature	250 mm
cavity length	21 cm
round-trip time	714 MHz
finesse	497
power enhancement	166
w0	250 micron

cavity setup

timing system

beam measurement

