Benchmarking Action Plan Tracking Group Presentation

Tim Barklow SLAC April 29, 2005

Critical Questions

- 1. What are the benchmark physics measurement errors* as a function of calorimeter parameters B, R, N_{X0} , N_{layer} (*ECAL*), Radiator(*HCAL*), N_{Λ} , N_{layer} (*HCAL*), & *HCAL* pixel size?
- 2. What are the benchmark physics measurement errors as a function of VXD and tracker material, $N_{layer}(tracker)$, K_{S}^{0} , Λ^{0} detection efficiency, and VXD inner radius?
- 3. What are the physics benchmark measurements?
- 4. Is the Fast MC Simulation program sufficiently detailed to reliably estimate physics measurement errors?

^{*} Error means statistical \oplus systematic (Ecm, pol, lumi, alignment, calibration)

#1: Physics Error vs Calorimeter Parameters

- Cannot directly vary B, R, etc. until full Calorimeter Simulation & Reco is more fully developed.
- Physics error vs ΔE_{jet}^{*} can be calculated before full simulation and reco software is completed, however.
- Try to parameterize detector response in terms of ΔE_{jet} (+few more variables?) once full Calorimeter Simulation & Reco system is working.

*
$$\Delta E_{jet} \equiv \sum_{i=reconstructed \ particles} E_i(reco) - \sum_{i=e^-,\mu^-,\pi^+,p^+,\gamma,K^0,n} E_i(true)$$

where sums are over objects in same thrust hemisphere for

$$e^+e^- \rightarrow u\overline{u}$$
 $\sqrt{s} = 500 \, GeV$ no beamstr, bremsstr, or final state QED/QCD rad.

#2: Physics Error vs VXD, Tracker Parameters

- Bruce Schumm has software to parameterize tracker response, so fast MC simulation is straightforward.
- Can also study physics errors as a function of general curvature and multiple scattering parameters $\frac{\delta p_t}{p_t^2} = a \oplus \frac{b}{p_t \sin \theta}$
- Coordinate VXD studies with VXD working group

#3: Physics Benchmark Processes

M. Battaglia, LCWS05 Benchmark Report:

Summary

- → Tentative sets of Benchmark Physics Reactions with quantitative, well-defined requirements have been proposed for optimisation of detector designs and some are already being considered by Detector Concept studies:
- → Timeline for deployment of a set of common physics benchmarks, more than list content, has been focus of discussion in parallel session;
- ♦ It is proposed to setup group with the task to further develop and follow benchmark definition process across detector studies:
 - T. Barklow, M. Battaglia, Y. Okada, M. Peskin, S. Yamashita, P. Zerwas
- ♦ Aim to prepare document summarising list of physics processes with needed accuracies and proposal for benchmark matrix before ACFA Study Meeting in Korea in July;
- ❖ Following further discussion, first (sub-)set of reactions could be made available before Snowmass as inputs to the summer study.

March 21, 2005 LCWS05

#3: Physics Benchmark Processes

Draft Table of Benchmark Processes:

	D 1		01 11	The second secon	T) 4 4
	Process and	Energy	Observables	Target	Detector
	Final states	(TeV)		Accuracy	Challenge
Higgs	$ee \rightarrow ZH \rightarrow \ell\ell X$	0.35	M_{recoil} , σ_{ZH} , BR_{bb}	$\Delta M_H = 100 \text{ MeV}, \delta \sigma_{ZH} = 2.5\%, \delta BR_{bb} = 1\%$	T
	$ee \rightarrow ZH, H \rightarrow bb / cc/\tau\tau$	0.35	jet flavour , jet (E, \vec{p})	$\Delta M_H = 40 \text{ MeV}, \ \delta(\sigma_{ZH} \times BR) = 1\%/5\%/5\%$	V
	$ee \rightarrow ZH, H \rightarrow WW^*$	0.35	$M_Z, M_W, \sigma_{qqWW^*}$	$\delta(\sigma_{ZH} \times BR_{WW^*}) = 4\%$	C
	$ee \rightarrow ZH, H \rightarrow \text{invisible}$	0.35	$\sigma_{qqE_{missing}}$	5σ Evidence for BR _{invisible} =1%	C
	$ee \rightarrow \nu \nu H$	0.5	$\sigma_{bb\nu\nu}$, M_{bb}	$\delta(\sigma_{\nu\nu H} \times BR_{bb}) = 1\%$	C
	$ee \rightarrow ttH$	1.0	σ_{ttH}	$\delta g_{ttH} = 5\%$	C
	$ee \rightarrow ZHH, \nu\nu HH$	0.5/1.0	σ_{ZHH} , $\sigma_{\nu\nu HH}$, M_{HH}	$\delta g_{HHH} = 20/10\%$	C
Strong SB	$ee \rightarrow WW$	0.5	σ & final-state	$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	V
	$ee \rightarrow \nu \nu WW/ZZ$	1.0	fermion $(E, \vec{p}), Q$	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$	C
SUSY	$ee \rightarrow \tilde{e}_R \tilde{e}_R \text{ (SPS1a)}$	0.5	E_e	$\delta M_{\tilde{\chi}_{i}^{0}} = 50 \text{ MeV}$	T
	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1 \text{ (SPS1a)}$	0.5	E_{tau}	$\delta(M_{\tilde{\tau}_1}^{-1} - M_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	
	$ee \rightarrow \tilde{t}_1 \tilde{t}_1 \text{ (SPS1a)}$	1.0		$\delta M_{\tilde{t}_1} = 2 \text{ GeV}$	
	$ee \to \tilde{\tau}_1 \tilde{\tau}_1 \text{ (D')}$	0.5	soft τ^{\pm} above $\gamma\gamma$ bkgd	$\delta M_{\tilde{\tau}_1}^{-1}, \delta M_{\tilde{\chi}_1^0}$	F
	$ee \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \ \tilde{\chi}_2^0 \tilde{\chi}_2^0 \ (LCC2')$	0.5	$\sigma_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}WW}, \sigma_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}ZZ}$	$\delta \sigma_{\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}}, \ \delta \sigma_{\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}}, \ \delta M_{\tilde{\chi}_{1}^{+}}, \ \delta M_{\tilde{\chi}_{2}^{0}} =$	C
	$ee \rightarrow HA \rightarrow bbbb \text{ (LCC4)}$	1.0	Mass constrained M_{bb}	$\delta M_A = 1 \text{ GeV}$	C
	$\chi_1^0 \rightarrow \gamma + E'$	0.5	non-pointing γ	$\delta c \tau = 10\%$	C
	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$	0.5	soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m}{=}200~\mathrm{MeV}$	F
Precision SM	$ee \rightarrow tt \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V
& New Physics	$ee \rightarrow ff [e, \mu, \tau; b, c]$	1.0	$\sigma_{ff}, A_{FB}, A_{LR}$	5σ Sensitivity to $M[Z_{LR}] = 15$ TeV	V
		0.0/4.0			Т
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		δM_{top} =50 MeV	1

#3: Physics Benchmark Processes

Draft Short List of Benchmark Processes:

	Process and	Energy	Observables	Target	Detector
	Final states	(TeV)		Accuracy	Challenge
Higgs	$ee \rightarrow ZH \rightarrow \ell\ell X$	0.35	M_{recoil} , σ_{ZH} , BR_{bb}	ΔM_H =100 MeV, $\delta \sigma_{ZH} = 2.5\%$, $\delta BR_{bb} = 1\%$	T
	$ee \rightarrow ZH, H \rightarrow bb \ / \ cc/\tau\tau$	0.35	jet flavour , jet (E, \vec{p})	ΔM_H =40 MeV, $\delta(\sigma_{ZH} \times BR)$ =1%/5%/5%	V
	$ee \rightarrow ZHH, \nu\nu HH$	0.5/1.0	$\sigma_{ZHH}, \sigma_{\nu\nu HH}, M_{HH}$	$\delta g_{HHH} = 20/10\%$	C
SUSY	$ee \rightarrow \tilde{e}_R \tilde{e}_R \text{ (SPS1a)}$	0.5	E_e	$\delta M_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	T
	$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1 \text{ (D')}$	0.5	soft τ^{\pm} above $\gamma\gamma$ bkgd	$\delta M_{ ilde{ au}_1},\delta M_{ ilde{ ii}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	F
	$ee \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-, \ \tilde{\chi}_2^0 \tilde{\chi}_2^0 \ (LCC2')$	0.5	$\sigma_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}WW}, \sigma_{\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}ZZ}$	$\delta\sigma_{\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}}, \ \delta\sigma_{\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}}, \ \delta M_{\tilde{\chi}_{1}^{+}}, \ \delta M_{\tilde{\chi}_{2}^{0}} =$	C
Precision SM	$ee \rightarrow ff [e, \mu, \tau; b, c]$	1.0	$\sigma_{ff}, A_{FB}, A_{LR}$	5σ Sensitivity to $M[Z_{LR}] = 15$ TeV	V
Energy/Lumi	$ee \rightarrow ee_{fwd}, Z\gamma$	0.3/1.0		δM_{top} =50 MeV, etc.	Т

#4: Is Fast MC Sufficiently Detailed to Reliably Estimate Physics Meas. Errors?

- Most physics analyses before Snowmass will be done with the Fast MC. However, these analyses will use reconstructed particle LCIO objects as input so that the same physics analysis software can be used for both the Fast and Full MC.
- Hope to do some physics analyses using the Full MC before Snowmass so that we can evaluate the quality of the Fast MC simulation. This will be an iterative process where the Fast MC program is continually improved.

Simulation Tools

TOOL	In Hand?
MC Programs for Generating Physics Events	Yes
MC Data Sets of all SM processes at Ecm=350, 500, 1000 GeV	NLC-Yes ILC - No
Fast Detector MC with Reco Particle LCIO output E, \vec{p} , impact params, charge, $id(e^-, \mu^-, \pi^+, \gamma, K_L^0)$ & errors	TESLA -Yes SID - No LDC – No GLD - No
Full Detector MC with Reco Particle LCIO output	TESLA -Yes SID - No LDC – No GLD - No

Products Delivered by the Beginning of Snowmass

- 1 ab⁻¹ MC Data Sets of all SM processes at Ecm=350, 500, 1000 GeV assuming nominal ILC machine parameters
- Fast SiD Detector MC with reco particle LCIO output
- Physics analysis software which uses reco particle LCIO as input and which produces as output the measurement error (stat+sys) for the following physics benchmark processes:
 - Cross section for $e^+e^- \rightarrow ZH$, vvH
 - Higgs BR to bb, WW*
 - Higgs self-coupling
 - Selectron, neutralino mass from selectron pair production
 - Chargino, neutralino cross sec & masses from focus point gaugino production
 - Ecm , lumi spectrum from Bhabhas & mu-pairs
- Software to parameterize calorimeter detector response in terms of ΔE_{jet} ,

#2: Physics Error vs Tracker Parameters

- What tracker parameters should the benchmarking be varying?
- How should tracker parameter variation be incorporated into the Fast MC?

#4: Is Fast MC Sufficiently Detailed to Reliably Estimate Physics Meas. Errors?

- What is the status of the Fast MC simulation of the tracker?
- Can we get a parameterization of K_S^0 , Λ^0 detection efficiency vs. pion polar angle/momentum?
- Would it be useful to have a parameterization of tracking efficiency vs. polar angle/momentum?
- Other effects?