Tracking Efficiency Studies for 5- and 8-Layer Microstrip Trackers Michael Young UCSC June 3, 2005

The Idea

Originally, the point of this study was to explore the differences (if any) between a 5 and an 8 layer central tracking barrel.

For now we have just been exploring the range of efficient tracking with the new track reconstruction algorithm (N. Sinev)

The Code

- JAS/LCD tracking studies using an updated and modified version of TrackEfficiencyDriver by W. Walkowiak (Snowmass '01).
- VXDBasedReco by N. Sinev used as the tracking code.
 - Reconstructs vertex hits and extrapolates out through the central tracker.
 - Previous studies have shown 99% efficiency with this tracking code.

The Detectors: 5 layers vs. 8

5 layer simply the SDJan03 detector.

Inver modeled on the SDJan03, but with 8 layers distributed in the same volume.

Only the central region is considered in either case.

The Events

e⁺ e⁻ → qqbar (uds only)
10,000 events for each detector.
No beam- or bremsstrahlung.
80% electron polarization
ILC500 configuration

Event Selection

We focus on events and MC particles that should always be caught by the detector: 2 jet events located in the central region.

MC truth jets filtered by thrust axis direction:
 $|\cos \theta_{thrust}| < 0.5$

MC truth thrust magnitude: > 0.94 required.

MC Particle Selection Based on MC truth information

- Radial origin min = 0 cm, max = 1 cm
- Z-origin min = 0 cm, max = 167 cm
- Ø Radial endpoint min = 3.6 cm, max = ∞
- \odot Central region only: $|\cos \theta| < 0.5$
- Ø Transverse momentum: pT ≥ 5 GeV

On to the results!

The Distributions

How do we do near the Jet Core?

Relaxing some cuts

We now ask how well the model tracker performs under less stringent conditions:

pT min = 5 GeV with rOrgMax = 125 cm (edge of outer layer)

pT min = 0 GeV with rOrgMax = 1 cm

How do we do at large radial origin?

How do we do at low pT?

The Distributions (again)

Conclusions

- So in retrospect, it seems a bit obvious that
 VXDBasedReco will give very similar results for the
 5 and the 8 since it requires a seed track from the vertex layers.
- High efficiency maintained in jet cores.
- Efficiency seems to fall off rapidly with decreasing pT...

- VXDBasedReco might really shine in tandem with a second tracking routine working in the central tracker and extrapolating inward. (Should UCSC take this on?)
- Without such a tracker (or further changes to Nick's code), we'll not see differences between the 5 & 8 layer central tracker geometries.