
D0 Note 4570

Version 0.5

TrigSimCert

A New Package to Certify and Analyse Triggers

Camille Bélanger-Champagnea,b, Yann Coadoua, Dugan O’Neila

Steven Bealea,c

aSimon Fraser University
bnow at McGill University

cnow at York University

October 17, 2004

Abstract

A new package, trigsimcert, is presented. It can be used as a certification tool for new releases
or trigger lists, or as the basis for trigger studies. It produces a ROOT tree containing information
about the whole DØ trigger system. The data is saved in a structured tree, relying on classes for each
object. These classes are described, as well as how to produce a tree and how to analyse it. [work in
progress, not yet complete]

Contents

1 Introduction 4

2 Inputs 5
2.1 Input File Formats . 5
2.2 RCP Parameters . 5

2.2.1 Framework RCP File . 5
2.2.2 CertAnalyze RCP File . 6

2.3 L1L2Chunk . 6
2.4 L3Chunk . 6

1

3 Output 7
3.1 Analysis Macros . 7

3.1.1 General Description . 7
3.1.2 Histogram Classes . 8
3.1.3 Histogram Properties . 9
3.1.4 Adding Histograms to a Class . 9
3.1.5 Creating a New Histogram Class . 11

3.2 Examples of Output . 13

A Classes description 15
A.1 Triggers . 15
A.2 Event . 15
A.3 Level 1 Triggers . 16

A.3.1 L1Cal . 16
A.3.2 L1CalEMTwrs/L1CalTwrs . 16
A.3.3 L1CalTiles . 17
A.3.4 L1CTT . 17
A.3.5 L1Tracks . 18
A.3.6 L1Muons . 18

A.4 Level 2 Trigger Preprocessors . 19
A.4.1 L2EM . 19
A.4.2 L2Jets . 20
A.4.3 L2Muons . 21
A.4.4 L2TracksSTTPT/STTIP/CTT . 22
A.4.5 L2MEt . 23
A.4.6 L2CPS . 23
A.4.7 L2FPS . 24

A.5 L2 Global Triggers . 24
A.5.1 L2GblEM . 25
A.5.2 L2GblMuons . 25
A.5.3 L2GblMEt . 26
A.5.4 L2GblTaus . 26
A.5.5 L2GblMJt . 26
A.5.6 L2GblInvMass . 26
A.5.7 L2GblHt . 26
A.5.8 L2GblTransMass . 27
A.5.9 L2GblTracks . 27

A.6 Level 3 Triggers . 27
A.6.1 L3Electrons . 27
A.6.2 L3Photons . 28
A.6.3 L3Jets . 29
A.6.4 L3MEt/L3Ht . 29
A.6.5 L3Taus . 30
A.6.6 L3Muons . 31
A.6.7 L3BTagIP . 32
A.6.8 L3Isolation . 32

2

A.6.9 L3IPTracks . 33
A.6.10 L3Tracks . 34
A.6.11 L3CFTVertex . 35

B Example of a Level 1 Histogram Class 36

C Macros Usage Examples 41
C.1 Your first trigsimcert session . 41
C.2 Your first trigsimcert session using the executable . 41
C.3 Using trigsimcert for a trigger analysis . 42

3

1 Introduction

The original purpose of the trigsimcert package is to certify new trigsim releases and to test new trigger
lists. To this end, it can run on all D0om data formats currently available, as described in section 2.
It relies on the existence of two chunks containing information about all three levels of the trigger

system, to produce ROOT trees containing this information in a structured way based on classes. A
detailed description of the content of these classes is given in appendix A.
The ROOT trees can then be analysed using the provided macros. Their content and use, as well as

advice to customise them, are described in section 3. It contains enough information to allow any user
to use the macros and classes to perform his/her own trigger study. A few relevant examples of how to
run the macros are reported in appendix C.
The latest documentation for TrigSimCert can always be found on the web from the main TrigSimCert

page:

http://www-d0.fnal.gov/computing/trigsim/cert/trigsimcert.html

It contains links to descriptions, tutorials on how to run trigsimcert and how to use the macros, as well
as results from certification of new releases and trigger lists.

4

http://www-d0.fnal.gov/computing/trigsim/cert/trigsimcert.html

2 Inputs

2.1 Input File Formats

TrigSimCert can read information from thumbnails or DST’s. It uses the L1L2Chunk and the L3Chunk,
which are available in both formats. For Level 3, some of the information may not be available in the
thumbnail. These input files can come from reconstructed data, trigsimed data or trigsimed Monte Carlo.
There is a d0tools script, runTrigSimCert. By default TrigSimCert assumes that it is running on

thumbnails. The minimal set of options to use is:

setup d0tools

setup D0RunII p17.00.00

runTrigSimCert -filelist=MyThumbnailFiles.dat

where MyThumbnailFiles.dat is a text file with a list of thumbnail input files.
If the input files are DST’s, the -DST option should be passed to the d0tools script:

runTrigSimCert -DST -filelist=MyDSTFiles.dat

This option would also run fine on raw data if only the Level 3 information was required, as raw data
contains an “online” L3Chunk. It would not, however, provide any information about Level 1 or Level
2 because the L1L2Chunk is not present. In order to solve this possible problem another option (-RAW)
was introduced, that makes TrigSimCert produce the L1L2Chunk on the fly so that it is available for the
analysis part to read:

runTrigSimCert -RAW -filelist=MyRawDataFiles.dat

TrigSimCert is also compatible with SAM. Using -defname instead of -filelist will automatically use
the SAM manager:

runTrigSimCert -defname=MyThumbnailDataset

As all d0tools scripts an online help is available:

runTrigSimCert -h

2.2 RCP Parameters

The number of RCP files has been voluntarily limited to a minimum. Most cases are dealt with auto-
matically but some common situations will still require the user to edit one of those files.

2.2.1 Framework RCP File

The framework RCP name convention is runD0TrigSimCert< SAM>< format>.rcp, where SAM is
present for the SAM RCP and format is nothing for thumbnail, DST or raw. The only difference
between the DST and thumbnail RCP’s is the unpacking of the thumbnail chunk. In the raw data
mode, it also calls l1l2chunk.rcp which runs the online l1l2unpacker and l1l2 reco in “data” mode. Which
framework RCP to call is decided by the d0tools script, depending on the command line options.

5

2.2.2 CertAnalyze RCP File

The CertAnalyze.rcp file controls what TrigSimCert is going to do. It contains three boolean flags
(certL1, certL2 and certL3), by default set to true, to decide which trigger levels should be analysed.
A second part concerns the output file. Its name can be changed (trigsimcert.root by default), as well

as the compression level (default: 1) and the autosave option (by default turned off): if it is set to a
positive integer n, the ROOT tree will be saved every n events. If the program crashes, all events that
had been processed before the last autosave are still readable.
The last parameters of this RCP file specify which chunks to look at. One can separately decide

which L1L2Chunk (L1L2ChunkChoice) and which L3Chunk (L3ChunkChoice) to read. By default they
are both set to “default”, which means “online” on data (raw or reconstructed) and offline on Monte
Carlo. One can specify “online” or “offline”. In order to read the “offline” chunks of trigsimed data, one
has to set those parameters to “offline” by hand.
Starting with p17, it is now possible to label the L1L2Chunk and have multiple chunks in the data. All

chunks generated with pre-p17 versions have a blank label, “”. The “auto” mode deals with it properly,
but if one specifies “online” or “offline” this mechanism is turned off, assuming the user know what he/she
is doing.
The D0TrigSimCert x.out file lists all the parameters that have been used. The D0TrigSimCert x.log

file contains information about which L1L2Chunk and L3Chunk have been attempted, depending on the
RCP request, and if it succeeded or not.

2.3 L1L2Chunk

All information about Level 1 and Level 2, as well as part of the trigger bits and names information, is
extracted from the L1L2Chunk. The p17 version of this chunk is much more developed than it used to
be, and TrigSimCert makes use of most of its variables.
Starting with p17 this chunk can be labelled at will. By default it is “online” when produced by

d0reco on data, and “offline” when produced by trigsim on data or Monte Carlo or by d0reco on Monte
Carlo. In both cases it contains the same information, including the trigger bit names coming from the
database in d0reco or from the level3.sim file when running trigsim.
A chunk selector is used in TrigSimCert to get the requested chunk. For pre-p17 L1L2Chunk’s, there

was no label and therefore no selector. The only way to access this chunk is if there is only this one
present in the data or by asking for a chunk with no label. TrigSimCert deal with it automatically.
In p17 you can also label the L1L2Chunk as you want. You can retrieve it in trigsimcert as described

in section 2.2.

2.4 L3Chunk

The L3Chunk is available as is in raw data and in DST’s. In the thumbnails a trimmed down version
is saved. When unpacking the thumbnail the L3Chunk is recreated but some information is missing.
This may show up in some variables being always at 0 when running on the thumbnail while they have
meaningful values when running on DST’s. Hopefully all the regularly used variables should be available
in both formats.
The L3Chunk has always had a hard coded label: “online” for raw data and “offline” for trigsimed

data or Monte Carlo.

6

3 Output

The output of TrigSimCert has the form of a ROOT tree. Each branch of this tree corresponds to a
trigger object, for example a L1Cal Trigger Tower or a L3Muon. This tree is absolutely independent
of the release of the D0 software except for the kinem util package. The classes used to fill the tree
are the same ones that allow to extract information from it in ROOT macros. An example of that is in
the macros provided in the macros directory of the trigsimcert package. A detailed description of the
classes of TrigSimCert can be found in appendix A.

3.1 Analysis Macros

The macros of TrigSimCert produce a set of plots showing the distributions of various properties of each
trigger object in the output of TrigSimCert. The macros can be used in two different ways: as macros
run within ROOT or as a command line executable via a Makefile. Both have the same functionalities.
The executable can be run through a real debugger like ddd, which is not the case for the ROOT macros,
and one gets gcc compilation messages that are more useful than the ACLiC ones.
The macros can serve two purposes: allowing the user to save a series of histograms of the properties

of trigger objects for a TrigSimCert output tree to compare two of those trees by using one as a reference
set. The other set, called “data” is plotted on top of the reference set, the reference histogram is scaled to
the area of the data histogram and the resulting combined histogram then allows for a visual comparison.
A reduced χ2 is computed for the comparison between the histograms. The histograms produced by the
macros are available in two formats: a ROOT file and a PostScript document.

3.1.1 General Description

Both the ROOT macros and the executable require as argument a text file, the file list, which contains
a list of TrigSimCert tree files. The output directory to be used can also be specified (optional for the
command-line executable which takes the current directory by default). The main macro class is called
Plots. The Plots constructor opens the files listed in the input file list and adds them to a ROOT
TChain. If none of the files listed exist, an error message is issued and the constructor exits. If only some
of them exist, it prints an error message with the name of each file it could not open and proceeds to
analyse the ones it could find. It also checks if the output directory listed exists by creating a file named
“test” and putting it into that directory. If it does not exist, the constructor exits. A third argument
(optional) allows the user to name the output PostScript file. The output ROOT file name is constructed
by replacing “.ps” by “.root”. By default this name is set to “plots.ps”, which makes the default ROOT
file name “plots.root”. The constructor also checks the filename provided by the user and completes it
with the extension if necessary. Using the same name twice will result in the existing file to be overwritten
without a warning being issued.
The constructor calls the Init() method which instantiates a TClonesArray for each branch of the

TrigSimCert tree. It also creates a set of new empty histograms for the branches.
The Plots TChain is read and the histograms are filled through the Loop() method. Once a TrigSim-

Cert object has been extracted, it is passed to the corresponding histograming object which fills the ap-
propriate histograms. At trigger levels 1 and 2 this means filling a predetermined number of histograms
for each object. At level 3, a set of histograms is defined for each trigger object (for example, L3 jets can
have : number of jets, ET , η and φ histograms) but many tools can be called for the same trigger object,
depending on the trigger list used. Therefore, one set of trigger object histograms will be filled for each

7

tool instance. That difference is reflected in the histogram filling classes of level 3 objects which are more
complex than the level 1 and level 2 ones, to be able to handle the variable number of histograms to be
produced. Namely, the histograms are stored in vectors and new sets of histograms are created as new
tools are found in the course of the Loop() function call.
Most of the trigger objects (muons, electrons, jets, etc.) can be found more than once in each event

and internal loops ensure they are all used when filling the histograms.
After the Loop() function has run, one of two things can happen: a reference file is created or the

comparison plots are produced. If the ROOT macro was run using Loop(true) or the executable was
run using the -makeref command line option, a reference file is created (it is always named “Ref.root”)
and the Save(*file) function is called on each histogram class.
If only Loop() is run (the argument is set to false by default) or if the -makeref option is not used,

when Loop() has produced its histograms it looks for a file named “Ref.root” in the specified output
directory. If it exists, a PostScript file of the given name is created and the Draw function is called on the
various histogram classes to produce comparison plots. Histograms are also saved in a ROOT file of the
same name as the PostScript file, in the same format as the Ref.root file.
Complete example sessions and list of options can be found in appendix C.

3.1.2 Histogram Classes

The histogram classes all inherit from a general histogram plotter class called HDraw located in the
macros/HistoFill directory. The most important feature of this class is the DrawHisto function which
is called in all inheriting histogram classes when its histograms are drawn. The calling line is

DrawHisto(TH1F *DATA, bool drawref, TH1F *REF, TLegend *Leg, char *hist_name,

char *file_name, bool Gaussian=false, bool isLog=false, bool isRangeAdj=false)

DATA is the histogram containing the data set. The drawref variable is set to true if the reference set
is to be used to draw comparison plots. REF is the histogram containing the reference set. Note that
even if drawref is set to false, there must be a REF argument in the calling line. Leg is a legend for the
histogram to which items can be added. It allows passing of an existing legend with entries that will not
get overwritten. The strings hist name and file name are respectively the name of the histogram being
drawn and the histogram class it is originating from. They are mostly present so they can be printed
to screen in case of problems with the drawing of the histograms. Gaussian indicates if the histogram
distribution should have a Gaussian curve fitted to it, in which case the RMS is given in the legend of
the histogram (false by default). The isLog variable indicates whether the histogram is to be plotted
with a logarithmic y-axis scale (false by default). The isRangeAdj argument allows the drawing method
to attempt to modify the range of the x axis to improve the legibility of the histogram (false by default).
If set to true, the x axis is rescaled to half of its original range if 98% of the distribution is in the left,
middle or right half of the histogram.
The various specific histogram classes all contain, on top of a constructor and a destructor, a Fill,

a DoneEvent, a Draw and a Save functions. For L1 and L2 classes, they are all very straightforward
functions. The constructor creates the appropriate set of histograms for the histogram class and the
destructor deletes them. Fill(SomeTrigsimcertClass *tobject) fills the histograms and, if appro-
priate, increments a counter that will indicate at the end of the event the number of instances of the
trigger object studied in the given event. The argument tobject is an instance of some trigsimcert class
(the appropriate header files can be found in the trigsimcert directory of the TrigSimCert package).
The DoneEvent() method, if appropriate, fills the histogram containing the number of trigger objects of

8

that class in the event and resets the counter to zero. The Save(*file) function saves the histogram
to the file given as argument. The Draw(TFile *ref, TPostScript *ps, bool debug=false) method
creates the TCanvases and TPads necessary to draw the given set of histograms and the corresponding
TLegends. It calls the DrawHisto function of the base class to produce the histograms and writes the
histograms to the PostScript file. In the arguments passed to the Draw method, ref is the file containing
the reference plots, ps is the output PostScript file name and the debug parameter, when set to true,
keeps the canvases open to facilitate the debugging of the macros.
In the case of L3 histogram classes, a set of histograms is produced for each physics tool found in the

sample for this histogram class. To keep all these histograms in memory, they are stored in vectors of
histogram objects. Every time a tool gets called, the GetHisto(toolname) function, where toolname is
the string name of the tool called, returns the index of the set of histograms associated with that tool. If
there is no such set of histograms, a new set is created and added to the vector. The rest of the class for
the L3 histograms works exactly like the L1 and L2 classes.

3.1.3 Histogram Properties

Four histograms are plotted by page. The set called Reference is presented as a solid red line and Data
as black crosses. The Reference is scaled to the area of Data. If there are any entries outside the range of
the histogram, extra legend entries indicate the number of entries in the underflow and/or overflow bins
for Data and Reference. The legend also includes a value of the reduced χ2 (if it is not zero) computed
on the non-zero bins of the histograms. If the Gaussian flag is set in the DrawHisto method, the RMS of
the Gaussian fit is also added to the legend. If the χ2 value is higher than a preset value (by default, 3),
a red star appears beside it on the legend to signal an important mismatch between Data and Reference.
If there is a set of histograms that exists for one of the trigger objects in Reference but not in Data, this
set of histograms is simply not drawn in the output file. If the opposite happens, a set of histograms
exists in Data but there is no Reference for it, the Data histograms are plotted in the output file and a
warning message is issued.

3.1.4 Adding Histograms to a Class

Adding new histograms to an existing class is a straightforward process, slightly more involved for L3
classes which have a more complex structure than L1 and L2 classes.
An example of an L1 class can be found in Appendix B. L2 classes are extremely similar. To add

an histogram to such a class called, for example, HISTO4, a new set of variables corresponding to the
properties of the new histogram must be declared in the private members of the histogram class (defined
in a .C file in the macros/HistoFill directory) as well as a new histogram object:

Float_t HISTO4max;

Float_t HISTO4min;

Int_t HISTO4bins;

std::string HISTO4axis;

TH1F *HISTO4;

In the constructor, these properties must be set and the histogram made:

Float_t HISTO4max=100;

Float_t HISTO4min=0;

9

Int_t HISTO4bins=100;

std::string HISTO4axis="the x axis name of the new histogram";

HISTO41=new TH1F("class_name_HISTO4", "title of the histogram", HISTO4bins,

HISTO4min, HISTO4max);

HISTO4->GetXaxis()->SetTitle(HISTO4axis.c_str());

HISTO4->GetXaxis()->CenterTitle();

The new histogram must be deleted in the destructor:

delete HISTO4;

It must also be filled in the histogram Fill method:

HISTO4->Fill(appropriate_accessor);

where appropriate accessor returns the value to be put in the histogram for the event and object
processed.
In the Save method, the new histogram must be written like the other ones:

HISTO4->Write();

Finally, in the Draw method, on the appropriate drawing pad a new legend must be created, the reference
histogram fetched and the DrawHisto method called for the new histogram:

TLegend *Leg4=new TLegend(.75,.75,.99,.99,"");

if(drawref)

{

TH1F *HISTO4ref = (TH1F*) ref->Get("class_name_HISTO4");

DrawHisto(HISTO4,drawref,HISTO4ref,Leg4,"HISTO4",THISFILE);

}

else

DrawHisto(HISTO4,drawref,0,Leg4,"HISTO4",THISFILE);

Because of their different structure, a few extra changes have to be made to the L3 classes. Amongst the
private members there must be a vector of histogram objects for the new histograms:

vector<TH1F> HISTO4;

Typically, the histogram pointers are named differently in the L3 classes:

TH1F *HISTO4_T;

In the destructor, the histograms are cleared instead of deleted:

HISTO4.clear();

In the Fill method, there are two ways to fill the histograms and the new histograms must be added to
both. If the tool has already been used (index in the vector > 0):

HISTO4.at(index).Fill(appropriate_accessor);

If a new tool is found, a new set of histograms has to be created, filled and added to the vector:

10

string l_HISTO4 = "class_name_HISTO4_"; l_HISTO4+=toolname;

HISTO4_T=new TH1F(l_HISTO4.c_str(), "Histogram title", HISTO4bins, HISTO4min,

HISTO4max);

HISTO4_T->GetXaxis()->SetTitle(HISTO4axis.c_str());

HISTO4_T->GetXaxis()->CenterTitle();

HISTO4_T->Fill(appropriate_accessor);

HISTO4.push_back(*HISTO4_T);

In the Save method, a for loop over the tools ensures all histograms get saved. Before the Write()

method is called, the histogram has to be fetched in the vector:

*HISTO4_T = HISTO4.at(i_tool);

HISTO4_T->Write();

Finally, the Draw method has to account for this new histogram. It contains more possible cases than for
L1 and L2 histogram classes:

TLegend *Leg4=new TLegend(.75,.75,.99,.99," ");

if(drawref)

{

TH1F *HISTO4ref = (TH1F*) ref->Get(l_HISTO4.c_str());

//Make sure this tool exists in the reference

if(HISTO4ref!=0)

{ DrawHisto(&(HISTO4.at(i_tool)), drawref, HISTO4ref, Leg4, "HISTO4",

THISFILE, false, false, true);}

else

{

DrawHisto(&(HISTO4.at(i_tool)), false, 0, Leg4, "HISTO4", THISFILE,

false, false, true);

cout<<"WARNING: in "<<l_HISTO4

<<" : tool not present in reference"<<endl;

}

}

else

DrawHisto(&(HISTO4.at(i_tool)), drawref, 0, Leg4, "HISTO4", THISFILE,

false, false, true);

3.1.5 Creating a New Histogram Class

The simplest way to create a new histogram class is to entirely copy the structure of an existing one and
adapt it to produce the correct output. The L1 and L2 classes have a structure which is different from
the one of L3 classes and this has to be taken into account when choosing which class to copy and modify.
The example shown here is for a L1 class.
For a new L1 class named “Hl1new” make sure to include the header file of the TrigSimCert class you

are interested in by changing the first include statement. If this class is, for example, L1TSCclass:

#ifndef L1TSCCLASS_H_

#include "trigsimcert/L1TSCclass.hpp"

#endif

11

The names of the constructor and destructor should be changed in accordance to the new histogram class
name.
Then all occurrences of the old histogram class name should be replaced by Hl1new and the histogram

properties set to correct values. The declaration of the fill method must be switched over to the correct
TrigSimCert class:

void Fill(L1TSCclass *l1tscclass);

and all Fill instances have to be switched over to the appropriate accessors for the corresponding
TrigSimCert class. The variable THISFILE should also be switched to the correct name:

THISFILE = "Hl1new.C";

In the Draw method, the canvas name should also be changed to be coherent with the new class name.
To modify the histograms and their content, refer to section 3.1.4.
The new histogram class must be added to the Plots method. In Plots.h:

#include "HistoFill/Hl1new.C"

A ROOT tree branch class must be declared and set, a TClonesArray declared as well as a histogram
class object. All the lines shown here should be added where the corresponding statements are made for
the other histogram classes:

L1TSCclass *l1tscclass;

TClonesArray *fl1new;

Hl1new *hl1new;

Modifications should also be done to the Plots.C file in a similar manner, starting with where the class
gets filled. This is generally done by:

for(int j=0;j<(fl1new->GetLast()+1);++j) {

l1new = dynamic_cast (fl1new->At(j));

hl1new->Fill(l1new);

}

Then continue modifying the Loop function:

hl1new->DoneEvent();

hl1new->Save(OUT);

hl1new->Draw(REF,ps);

The Init() function needs to create and set a certain number of objects:

l1tscclass = new L1TSCclass();

// the second argument is the number of objects to start with

fl1new = new TClonesArray("L1TSC",1);

fChain->SetBranchAddress("L1TSCclass",&fl1new);

hl1new = new Hl1new();

In the ReInit method:

12

delete fl1new;

delete hl1new;

In loadstuff.C the name of the TrigSimCert class needs to be added if it is a new class:

#include "trigsimcert/src/L1TSCclass.cpp"

and in loadstuff linkdef.h as well:

#pragma link C++ class L1TSCclass+;

Finally the class should be added to the Makefile by putting L1TSCclass.hpp in the HDRS variable.
The new histogram class is now ready to use.

3.2 Examples of Output

When the macros are run on two sets of trigsimcert ROOT trees, a PostScript file containing comparison
plots is produced. An example of such a plot is shown in Figure 1. The red histogram corresponds to
the reference set and the black crosses to the new data being compared to the reference. They have their
respective axes in red on the right hand side and in black on the left hand side. A χ2 value is displayed,
accompanied with a red star if the matching is not good. If there is an overflow, it is mentioned in the
legend.

13

L3 Tracks
0 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

300

Number of L3 Tracks

R
ef

er
en

ce

0

1000

2000

3000

4000

5000

6000

7000

Data

Reference

^2 = 0.883χR.

Number of L3 Tracks

Pt (GeV)
0 10 20 30 40 50 60

0

2000

4000

6000

8000

10000

L3 Tracks Pt

R
ef

er
en

ce

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2
x10

Data
Reference
Overflow = 92

^2 = 0.845χR.

L3 Tracks Pt

hits XY
0 2 4 6 8 10 12 14 16

0

1000

2000

3000

4000

5000

L3 Tracks # XY Hits

R
ef

er
en

ce

0

2000

4000

6000

8000

10000

1
x10

Data

Reference

^2 = 1.053χR.

L3 Tracks # XY Hits

Z (cm)
-200 -150 -100 -50 0 50 100 150 200
0

200

400

600

800

1000

1200

L3 Tracks Z

R
ef

er
en

ce

0

5000

10000

15000

20000

25000

Data

Reference

^2 = 4.825χR.

L3 Tracks Z

PhysGlobalTracker

Figure 1: Example of comparison plots produced by the trigsimcert macros

14

A Classes description

The following tables present the classes and methods called by TrigSimCert to produce the ROOTtuple
output. Unless specified, any given table corresponds to a branch of that name in the output of TrigSim-
Cert. Each one of these branches consists of a TClonesArray of a specific TrigSimCert class. Before
each table, the corresponding TrigSimCert header file with the class definition is given, as well as the
analysis package that is used to fill the information to the L1L2Chunk or the L3Chunk that is read back
by TrigSimCert. The exact file or web page where the information was found to document these tables
is also given to facilitate more in dept research. The columns of the table give the accessors associated
with each branch in the TrigSimCert output, the methods used from the respective packages to fill the
branch and the physical interpretation of the various leaves contained in the branch.

A.1 Triggers

The Triggers branch is a TClonesArray of Trigger objects. It contains one entry for each L3 trigger and
provide all the relevant information about the three trigger levels associated with that L3 trigger.

Header file: trigsimcert/Trigger.hpp
Packages used to fill the chunk read: l1l2 evt and l3fchunk
Information taken from l1l2 evt/L1L2Chunk.hpp and l3fchunk/L3Chunk.hpp

Accessor

L1Name() string name of the L1 trigger
L2Name() string name of the L2 trigger
L3Name() string name of the L3 trigger
L1Bit() int L1 bit number
L2Bit() int L2 bit number
L1Passed() bool L1 trigger was fired
L2Passed() bool L2 trigger was fired
L3Passed() bool L3 trigger was fired
L1Prescale() int prescale of the L1 trigger
L2Unbiased() bool L2 trigger was unbiased
L3Unbiased() bool L3 trigger was unbiased
L3ForceUnbiased() bool not L3Passed() and either L2Unbiased() or L3Unbiased(). For DST

format: status is “force unbiased”

A.2 Event

The Event branche simply contains the run and event number.

Header file: trigsimcert/Event.hpp
Package used to fill the chunk read: edm
Information taken from edm/Event.hpp

Accessor Method Used

15

RunNumber() collisionID().runNumber() int run number associated to the event read
EventNumber() collisionID().eventNumber() int event number of the event read

A.3 Level 1 Triggers

A.3.1 L1Cal

The L1Cal branch contains the global information about the calorimeter as a whole.

Header file: trigsimcert/L1Cal.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l1cal reco.hpp

Accessor Method used

GblEMEt() sum em energy() float total energy in the EM part of the L1 calorimeter towers
GblEt() sum tot energy() float total energy in the L1 calorimeter towers
GblMEt() missing pt() float missing transverse energy measured from L1 calorimeter

towers
EM1Sort() em eta(int i) float largest EM energy value mesured in a single calorimeter

tower
EM2Sort() em energy(int i) float second largest EM energy value mesured in a single

calorimeter tower
EM3Sort() em energy(int i) float third largest EM energy value measured in a single

calorimeter tower
EM4Sort() em energy(int i) float fourth largest EM energy value measured in a single

calorimeter tower
Tot1Sort() tot energy(int i) float largest total energy value measured in a single calorimeter

tower
Tot2Sort() tot energy(int i) float second largest total energy value measured in a single

calorimeter tower
Tot3Sort() tot energy(int i) float third largest total energy value measured in a single

calorimeter tower
Tot4Sort() tot energy(int i) float fourth largest total energy value measured in a single

calorimeter tower

A.3.2 L1CalEMTwrs/L1CalTwrs

L1CalTwrs and L1CalEMTwrs are two distinct branches in the output ROOT tree. They are TClonesArray’s
of the same L1CalTwr class (which contains information about a single tower) so they contain the same
variables which are filled by very similar methods. They return calorimeter information on a tower-by-
tower basis and the towers are sorted by transverse energy in descending order. Eta() and Phi() have
been remapped (see l1l2 evt/src/l1cal reco.cpp for explanations)

Header file: trigsimcert/L1CalTwr.hpp
Package used to fill the chunk read: l1l2 evt

16

Information taken from l1l2 evt/l1cal reco.hpp

Accessor Method used

Et() em energy(int i) float total energy in a calorimeter (EM) tower
tot energy(int i)

Eta() em eta(int i) float pseudorapidity of a calorimeter (EM) tower
tot eta(int i)

Phi() em phi(int i) float azimuthal angle of a calorimeter (EM) tower
tot phi(int i)

iEta() em ieta(int i) int pseudorapidity bin number of a calorimeter (EM) tower
tot ieta(int i)

iPhi() em iphi(int i) int azimuthal angle bin number of a calorimeter (EM) tower
tot iphi(int i)

A.3.3 L1CalTiles

The L1CalTiles branch is a TClonesArray of calorimeter large tiles. They are sorted by transverse energy
in descending order.

Header file: trigsimcert/L1CalTile.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l1cal reco.hpp

Accessor Method used

Et() tile energy(int i) float total energy
Eta() tile eta(int i) float pseudorapidity
Phi() tile phi(int i) float azimuthal angle

A.3.4 L1CTT

The L1CTT branch contains a summary of the information for all sectors of the CTT.

Header file: trigsimcert/L1CTT.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l1ctt reco.hpp

Accessor Method used

NTracks() size() int number of track candidates found by the CTT
CPS() int[80] array of number of CPS clusters for all CTT sectors,

filled by CPS(int)
CPS(int i) numCPSclus(int i) int number of CPS clusters (varying between 0 and 3) for

CTT sector i (0 ≤ i < 80)
Occup() int[80] array of occupancy for all CTT sectors, filled by Oc-

cup(int)
Occup(int i) occupancy(int i) int occupancy (varying between 0 and 240) for CTT sector

i (0 ≤ i < 80)

17

A.3.5 L1Tracks

The L1Tracks branch consists of a TClonesArray of CTT tracks.

Header file: trigsimcert/L1Track.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l1ctt reco.hpp

Accessor Method used

Sector() l1trk sector(int i) int sector number of the CTT track
PtBin() pt bin(int i) int pT of the CTT track (0: pT=1.5-3.0 GeV, 1: pT=3.0-5.0

GeV, 2: pT=5.0-10.0 GeV, 3: pT >10 GeV)
LowerPt() float lower edge of the pT bin for a track found by the L1CTT

trigger, derived from PtBin() (value of 1.5, 3.0, 5.0 or
10.0)

UpperPt() float upper edge of the pT bin for a track found by the L1CTT
trigger, derived from PtBin() (value of 3.0, 5.0, 10.0 or
999.0)

Charge() charge(int i) int charge of the CTT track
CPSMatch() l1trk cps(int i) int CPS track match flag (0: no match, 1: loose match, 2:

tight match) for the CTT track
Occup() l1trk occup(int i) int occupancy (varying between 0 and 240) for the CTT sec-

tor in which the track was found
Iso() l1trk iso(int i) int isolation (0: not isolated, 1: isolated) of the CTT track

(isolated if it is the only track in the sector and the 2
adjacent ones)

NCPS() l1trk numcps(int i) int number of CPS clusters (varying between 0 and 3) for the
CTT sector in which the track was found

Phi() float azimuthal angle of the track, derived from Sector()

A.3.6 L1Muons

The L1Muon branch consists of a TClonesArray of L1Muon objects containing information about the
muon candidates found.

Header file: trigsimcert/L1Muon.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l1muo reco.hpp

Accessor Method used

Err() l1mu err() int muon trigger error word
CentTrigOct() c trig oct() int number of central octants that have L1 muon candidates
NorthTrigOct() n trig oct() int number of north endcap octants that have L1 muon candi-

dates
SouthTrigOct() s trig oct() int number of south endcap octants that have L1 muon candi-

dates

18

CenID0() l1mu cen id0() int central region MTM input data word 0
CenID1() l1mu cen id1() int central region MTM input data word 1
CenID2() l1mu cen id2() int central region MTM input data word 2
CenID3() l1mu cen id3() int central region MTM input data word 3
CenID4() l1mu cen id4() int central region MTM input data word 4
CenID5() l1mu cen id5() int central region MTM input data word 5
NorthID0() l1mu n id0() int north endcap MTM input data word 0
NorthID1() l1mu n id1() int north endcap MTM input data word 1
NorthID2() l1mu n id2() int north endcap MTM input data word 2
NorthID3() l1mu n id3() int north endcap MTM input data word 3
NorthID4() l1mu n id4() int north endcap MTM input data word 4
NorthID5() l1mu n id5() int north endcap MTM input data word 5
SouthID0() l1mu s id0() int south endcap MTM input data word 0
SouthID1() l1mu s id1() int south endcap MTM input data word 1
SouthID2() l1mu s id2() int south endcap MTM input data word 2
SouthID3() l1mu s id3() int south endcap MTM input data word 3
SouthID4() l1mu s id4() int south endcap MTM input data word 4
SouthID5() l1mu s id5() int south endcap MTM input data word 5

A.4 Level 2 Trigger Preprocessors

Most L2 trigger preprocessors inherit from the trigsimcert base class L2Base. This class contains accessors
Et(), iEta(), iPhi(), Eta() and Phi(). When those accessors are present in a class from the base class,
they are listed at the beginning of the table and are separated from the accessors specific to that class
by a double line.

A.4.1 L2EM

The L2EM preprocessor branch is a TClonesArray of EM object candidates.

Header file: trigsimcert/L2EM.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2calemp reco.hpp

Accessor Method used

Et() et() float transverse energy
iEta() eta bin() int pseudorapidity bin number
iPhi() phi bin() int azimuthal angle bin number
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()

Iso() isofc() float isolation fraction
Emf() emfrc() float EM fraction for the highest ET tower of the

EM object candidate

19

SeedEta() ieta() int pseudorapidity bin number for the EM ob-
ject candidate (seed tower)

SeedPhi() iphi() int azimuthal angle bin number for the EM ob-
ject candidate (seed tower)

SeedEtaNeighbour() ietaN() int pseudorapidity bin number of the nearest
neighbour tower of the EM object (2nd high-
est tower)

SeedPhiNeighbour() iphiN() int azimuthal angle bin number of the nearest
neighbour tower of the EM object (2nd high-
est tower)

SaturatedTotTower() saturatedTotTower() bool the total (EM+Had) tower is saturated
SaturatedEMTower() saturatedEMTower() bool the EM tower is saturated
NoNeighbour() noNeighbour() bool there is no second tower above threshold in

the EM object
EtaOrPhiNeighbour() etaorphiNeighbour() int the eventual second tower above threshold

shares the same value of the pseudorapidity
(0) or azimuthal angle (1) as the highest ET

tower
PositionNeighbour() positionNeighbour() int the eventual second tower above threshold

has larger (1) or smaller (0) rapidity or az-
imuthal angle with respect to the highest ET

tower.
EtNeighbour() etNeighbour() float transverse energy of the eventual second

tower above threshold
EmfNeighbour() emfrcNeighbour() float EM fraction of the eventual second tower

above threshold

A.4.2 L2Jets

The L2Jets preprocessor branch is a TClonesArray of jet candidates.

Header file: trigsimcert/L2Jet.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2caljetp reco.hpp and l2caljetworker/src/CalJetWorker.cpp

Accessor Method used

Et() et() float transverse energy of the jet
iEta() eta bin() int pseudorapidity bin number of the jet (cluster

weighted)
iPhi() phi bin() int azimuthal angle bin number of the jet (cluster

weighted)
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()

20

CentralTwrEta() ieta() int pseudorapidity bin number of the central
tower of the jet

CentralTwrPhi() iphi() int azimuthal angle bin number of the central
tower of the jet

LeadTwrEta() ietam() int pseudorapidity bin number of the leading
tower of the jet

LeadTwrPhi() iphim() int azimuthal angle bin number of the leading
tower of the jet

SaturatedTotTower() saturatedTotTower() bool one of the trigger towers in the jet was satu-
rated

SaturatedEMTower() saturatedEMTower() bool one of the EM trigger towers in the jet was
saturated

ZeroETSum() zeroETsum() bool the sum of the positive transverse energies is
equal to zero

A.4.3 L2Muons

The L2Muons branch is a TClonesArray of muon candidates.

Header file: trigsimcert/L2Muon.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2muonp reco.hpp

Accessor Method used

Et() int not relevant (not filled)
iEta() eta bin(int i) int pseudorapidity bin number of the muon
iPhi() phi bin(int i) int azimuthal angle bin number of the muon
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()

ToroidPtBin() ToroidPt(int i) int pT bin number of the muon candidate
(0.25 GeV bins)

ToroidPt() float physical toroid pT (ToroidPtBin()/4)
ToroidPtNegative() ToroidPt negative(int i) bool the muon candidate has negative charge
Charge() int -1 if ToroidPtNegative(), +1 otherwise
L1PtThres() L1PtThres(int i) int L1 pT threshold of the L2 muon candidate
L1PtSignUnknown() L1Pt sign unknown(int i) bool L1 could not measure the charge of the

L2 muon candidate
L1PtNegative() L1Pt negative(int i) bool the L1 charge is negative
L1Charge() int -1 if L1PtNegative(), +1 otherwise
QMask() Q Mask(int i) int quality of the muon candidate
ScTimeA() ScTimeA(int i) int timing information measured on the A-

layer scintillator
ScTimeB() ScTimeB(int i) int timing information measured on the B-

layer scintillator

21

ScTimeC() ScTimeC(int i) int timing information measured on the C-
layer scintillator

IsCentral() bool the muon candidate is in the central re-
gion

IsForward() bool the muon candidate is in the forward re-
gion

A.4.4 L2TracksSTTPT/STTIP/CTT

L2TracksSTTPT, L2TracksSTTIP and L2TracksCTT are three distinct branches in the output ROOT
tree. They are TClonesArray’s of the same L2Track class (which contains information about a single
track) so they contain the same leaves which are filled by very similar methods. The L2TracksSTTPT
are sorted by pT , the L2TracksSTTIP by impact parameter and the L2TracksCTT by pT from the CTT
information only.

Header file: trigsimcert/L2Track.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2trkp reco.hpp

Accessor Method used

CTTiPhi0() cttphi0Bin() int azimuthal angle bin number at the DCA point using
only the CTT information

CTTiPhiEM3() cttphiEM3Bin() int azimuthal angle bin number at the EM3 layer of the
calorimeter using only the CTT information

CTTPt() cttpt() float pT of a track candidate using only the CTT informa-
tion

CTTPhi() float azimuthal angle, derived from CTTiPhi0()
CTTPhiEM3() float azimuthal angle, derived from CTTiPhiEM3()
CTTSign() cttsign() int charge of the track using only the CTT information()
CTTL2Iso() cttl2iso() int L2 CTT track isolation
CTTIso() cttiso() int L1 CTT track isolation (0: not isolated, 1: isolated)
CTTPreshower() cttpreshower() int L1 CTT track preshower match information (0: no

match, 1: loose CPS match, 2: tight CPS match)
STTiPhi() coarse phi bin() int azimuthal angle bin number at the DCA point for

the track obtained from the final track fit (including
STT information)

STTPhi() float azimuthal angle, derived from STTiPhi() and
FinePhi()

STTPt() sttpt() float pT from the final track fit (including STT informa-
tion)

STTSign() sign() int charge of the track from the final track fit (including
STT information)

DEdx() dedx() int dE/dx for the track candidate
Barrel() barrel() int SMT barrel number for the track candidate

22

Chi2() chi2() float χ2 of the track fit
FitStatus() fitstatus() int STT status word (0: fit not performed, 1: fit failed

to converge, 2: fit successful)
TruncLayers() trunclayers() int more than 58 SMT clusters were associated with the

track fitting road. Only the first 58 were considered
in the fit

Topology() topology() int the track candidate has 3 layers (1) or 4 layers (0)
SkippedLayer() skippedlayer() int the SMT layer skipped in the fit (valid only if Topol-

ogy() = 1)
IPSig() ipsignificance() int significance of the impact parameter calculated by

the STT fit
ImpParam() impactparameter() int impact parameter calculated by the STT fit
FinePhi() fine phi bin() int finer granularity azimuthal angle at the DCA point:

each π/80 sector is divided into 16 additional bins

A.4.5 L2MEt

Branch not yet properly implemented in the L1L2Chunk
The L2MEt branch is TClonesArray of missing ET objects.

Header file: trigsimcert/L2MEt.hpp
Package used to fill the chunk read l1l2 evt
Infomation taken from l1l2 evt/l2calmetp reco.hpp

Accessor Method used

MEx() ETx() float x component of the missing transverse energy vector
MEy() ETy() float y component of the missing transverse energy vector
ScalarEt() scalarET() float scalar transverse energy
PosETRing(int i) posETring(int i) float positive contribution to the transverse energy in a

given eta ring (0 ≤ i ≤ 4)
NegETRing(int i) negETring(int i) float negative contribution to the transverse energy in a

given eta ring (0 ≤ i ≤ 4)
MEtPhi() float azimuthal angle, derived from MEx() and MEy()

MEt() float missing transverse energy (
√

MEx()2 +MEy()2)

A.4.6 L2CPS

The L2CPS branch is a TClonesArray of trigger objects in the Central Preshower D etector.

Header file: trigsimcert/L2CPS.hpp
Pacakge: l1l2 evt
Information taken from l1l2 evt/l2cpsp reco.hpp

Accessor Method used

Et() pT() float transverse energy

23

iEta() etaBin() int pseudorapidity bin number
iPhi() phiBin() int azimuthal angle bin number
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()

LooseMatch() loosematch() int loose track match
TightMatch() tightmatch() int tight track match
MultTrackTag() multTrackTag() int multiple track matches for the CPS object
IsoTrk() isotrk() int isolated track
AdjacentCTTMatch() psadj() int track match with an adjacent CTT sector
Sign() sign() int charge (0: positive, 1: negative) for the track

matching the CPS object
Charge() int -1 if Sign() was 1, +1 if it was 0

A.4.7 L2FPS

Branch not yet properly implemented in the L1L2Chunk
The L2FPS branch is a TClonesArray of trigger objects in the Forward Preshower Detector.

Header file: trigsimcert/L2FPS.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2fpsp reco.hpp

Accessor Method used

Et() float not relevant (not filled)
iEta() absetaBin() int pseudorapidity bin number
iPhi() phiBin() int azimuthal angle bin number
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()

uMIP() uMIP() int energy deposited in the U layer
vMIP() vMIP() int energy deposited in the V layer
EtaSign() etaSign() int the FPS object is in the north (0) or south (1) endcap
HiLoThresh() HiLoThresh() int threshold used
IsNorth() bool the FPS object is in the north endcap (derived from

EtaSign())
IsSouth() bool the FPS object is in the south endcap (derived from EtaSign()

A.5 L2 Global Triggers

Most L2 global triggers inherit from the trigsimcert base class L2GblBase, which itself inherits from
L2Base the accessors Et(), iEta(), iPhi(), Eta() and Phi(). It adds to them the accessors ObjectID() and
BaseObjects(). When those accessors are present in a class from the base class, they are listed at the
beginning of the table and are separated from the accessors specific to that class by a double line.

24

A.5.1 L2GblEM

The L2GblEM branch is a TClonesArray of global EM candidates.

Header file: trigsimcert/L2GblEM.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblEMObj reco.hpp

Accessor Method used

Et() pt() float transverse energy
iEta() ieta() int pseudorapidity bin number
iPhi() iphi() int azimuthal angle bin number
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()
ObjectID() objectID() int L2 global trigger identifier
BaseObjects(int i) baseObjects (int j) int[] identifiers of the objects used to build the L2

global object

Iso() isolation() float isolation
Emf() emFraction() float EM fraction
NoNeighbour() noNeighbour() bool single tower EM object
NeighbourLowET() neighbourLowET() bool the EM object has a single tower because the en-

ergy of the nearest neighbour is below threshold
SeedHighEmf() seedHighEMFrac() bool leading tower of the EM object is above the EM

fraction cut

A.5.2 L2GblMuons

The L2GblMuons branch is a TClonesArray of global muon candidates.

Header file: trigsimcert/L2GblMuon.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblMuon reco.hpp

Accessor Method used

Et() pt() float transverse energy
iEta() ieta() int pseudorapidity bin number
iPhi() iphi() int azimuthal angle bin number
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()
ObjectID() objectID() int L2 global identifier
BaseObjects(int i) baseObjects (int j) int[] identifiers of the objects used to build the L2 global

object

Quality() quality() int muon quality (1: loose, 2: medium, 3: tight)
Prompt() prompt() int time of flight (1: loose, 2: medium, 3: tight)
Sign() sign() int charge of the muon (0=unknown)

25

ToroidPt() ToroidPt() float transverse momentum

A.5.3 L2GblMEt

Branch not yet properly implemented in the L1L2Chunk
Header file: trigsimcert/L2GblMEt.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblMET reco.hpp

A.5.4 L2GblTaus

Branch not yet properly implemented in the L1L2Chunk
Header file: trigsimcert/L2GblTau.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblTau reco.hpp

A.5.5 L2GblMJt

Branch not yet properly implemented in the L1L2Chunk
Header file: trigsimcert/L2GblMJt.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblMJT reco.hpp

A.5.6 L2GblInvMass

The L2GblInvMass is a TClonesArray of invariant mass objects.

Header file: trigsimcert/L2GblInvMass.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblInvMass reco.hpp

Accessor Method used

ObjectID() objectID() int L2 global identifier
BaseObjects(int i) baseObjects (int j) int[] identifiers of the objects used to build the L2 global

object
Mass() mass() float invariant mass

A.5.7 L2GblHt

Branch not yet properly implemented in the L1L2Chunk
Header file: trigsimcert/L2GblHt.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblHt reco.hpp

26

A.5.8 L2GblTransMass

Branch not yet properly implemented in the L1L2Chunk
Header file: trigsimcert/L2GblTransMass.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblTranMass reco.hpp

A.5.9 L2GblTracks

The L2GblTracks branch is a TClonesArray of track objects.

Header file: trigsimcert/L2GblTrack.hpp
Package used to fill the chunk read: l1l2 evt
Information taken from l1l2 evt/l2gblTrk reco.hpp

Accessor Method used

Et() pt() float transverse momentum
iEta() ieta() int pseudorapidity bin number
iPhi() iphi() int azimuthal angle bin number
Eta() float pseudorapidity, derived from iEta()
Phi() float azimuthal angle, derived from iPhi()
ObjectID() objectID() int L2 global identifier
BaseObjects(int i) baseObjects (int j) int[] identifiers of the objects used to build the L2 global

object

Quality() quality() int track quality (1: loose, 2: medium, 3: tight)
STTFit() sttFit() int STT track fit status (0: no fit, 1: fit failed, 2: fit

succeeded)
IPSig() ipSig() int impact parameter significance
ImpParam() impParam() int signed impact parameter

A.6 Level 3 Triggers

Most L3 triggers inherit from the base class L3Base. This class contains accessors Et(), Eta(), Phi()
and ToolName(). When those accessors are present in a class from the base class, they are listed at
the beginning of the table and are separated from the accessors specific to that class by a double line.
Although most classes inherit this base class, the quantities the base class contains are not always filled
from the same methods. The ToolName() accessor allows for later separation of trigger objects by trigger
list tool instances. Phi() is converted if necessary to always be in [0, 2π[.

A.6.1 L3Electrons

The L3Electrons branch is a TClonesArray of L3 electron candidates.

Header file: trigsimcert/L3Ele.hpp
Package used to fill the chunk read: l3femtools ele results
Information taken from l3femtools ele results/L3ElePhysicsResults.hpp, l3femtools/src/L3TEle.cpp and

27

http://www-d0.fnal.gov/d0dist/dist/releases/development/l3femtools/doc/L3TEle overview.html

Accessor Method used

Et() get ET() float transverse energy
Eta() get detectorEta() float pT weighted pseudorapidity
Phi() get kineResults()->phi() float pT weighted azimuthal angle
ToolName() l3mapIter->first string trigger list name of the physics tool that pro-

duced the candidate

Iso() get isolation() float isolation
Emf() get emFraction() float EM fraction
Chi2() get chi2() float χ2

EoverP() get E over p() float ET /pT

PsMatch() PsMatch() bool match between calorimeter cluster and PS
hits

CpsMatch() CpsMatch() bool match between calorimeter cluster and CPS
hits

TrackMatch() TrackMatch() bool match between calorimeter cluster and track
or CPS cluster

CalTrackMatch() CalTrackMatch() bool match between calorimeter cluster and track
CpsTrackMatch() CpsTrackMatch() bool match between CPS cluster and track
CalCpsDmin() get CalCpsDmin() float ∆η between calorimeter cluster and matched

CPS cluster
CpsTrackDmin() get CpsTrackDmin() float ∆z between CPS cluster and matched track
CalTrackDmin() get CalTrackDmin() float ∆R between calorimeter cluster and matched

track (at EM3 layer)
CalCpsDPhi() get CalCpsDPhi() float ∆φ between calorimeter cluster and matched

CPS cluster
CpsTrackDPhi() get CpsTrackDPhi() float ∆φ between CPS cluster and matched track
CalTrackDPhi() get CalTrackDPhi() float ∆φ between calorimeter cluster and matched

track (at EM3 layer)
Em1Width() get Em1Width() float transverse shower width in EM1 layer
Em2Width() get Em2Width() float transverse shower width in EM2 layer
Em3Width() get Em3Width() float transverse shower width in EM3 layer
Em1RescWidth() Em1RescWidth() float rescaled transverse shower width in EM1

layer
Em2RescWidth() Em2RescWidth() float rescaled transverse shower width in EM2

layer
Em3RescWidth() Em3RescWidth() float rescaled transverse shower width in EM3

layer

A.6.2 L3Photons

The L3Photons branch is a TClonesArray of L3 photon candidates.

Header file: trigsimcert/L3photon.hpp

28

http://www-d0.fnal.gov/d0dist/dist/releases/development/l3femtools/doc/L3TEle_overview.html

Package used to fill the chunk read: l3femtools photon results
Information taken from l3femtools photon results/L3PhotonPhysicsResults.hpp

Accessors Method used

Et() get ET() float transverse energy
Eta() get detectorEta() float pT weighted pseudorapidity
Phi() get kineResults()->phi() float pT weighted azimuthal angle
ToolName() l3mapIter->first string trigger list name of the physics tool that produced

the candidate

Iso() get isolation() float isolation
Emf() get emFraction() float EM fraction

A.6.3 L3Jets

The L3Jets branch is a TClonesArray of L3 jets.

Header file: trigsimcert/L3Jet.hpp
Package used to fill the chunk read: l3fjettools results
Information taken from jet evt package and l3fjettools results/L3JetsPhysicsResults.hpp

Accessor Method used

Et() get ET() float transverse energy
Eta() get detectorEta() float pT weighted pseudorapidity
Phi() get kineResults()->phi() float pT weighted azimuthal angle
ToolName() l3mapIter->first string trigger list name of the physics tool that pro-

duced the candidate

EmEtFraction() get emETfraction() float ET fraction in layers 1-7
IcdmgEtFraction() get icdmgETfraction() float ET fraction in ICD and massless gaps (layers

8-10)
ChEtFraction() get chETfraction() float ET fraction in Coarse Hadronic layers (lay-

ers 15-17)
HotCellRatio() get hotcellratio() float ratio of hottest to next-hottest cell in the

calorimeter

A.6.4 L3MEt/L3Ht

The L3MEt and L3Ht branches are TClonesArrays of L3 MEt and Ht objets.

Header file: L3MEt.hpp
Package used to fill the chunk reads: l3fCalMEt phys results / l3fJetMEt phys results
Information taken from l3fCalMEt phys results and l3fJetMEt phys results

L3MEtPhysicsResults.hpp

Accessor Method used

Phi() get MEtPhi() float azimuthal angle

29

ToolName() l3mapIter->first string trigger list name of the physics tool that produced the can-
didate

MEt() get MEt() float missing transverse energy
MEx() get MEx() float x component of missing transverse energy
MEy() get MEy() float y component of missing transverse energy
ScalarEt() get ScalarET() float scalar sum of the transverse energy
MEtsignif() get MEtSignif() float significance of the missing transverse energy

(MEt/
√
ScalarEt)

AlgFlag() get AlgFlag() int algorithm = 1000*(Muon Corr.?) + 100*(Towers?) +
10*(Cells?) + 1*(UseCH?) (not filled in the case of L3Ht)

A.6.5 L3Taus

The L3Taus branch is a TClonesArray of L3 tau candidates.

Header file: L3Tau.hpp
Package used to fill the chunk read : l3fTauTools physres
Information taken from
http://www-d0.fnal.gov/computing/trigsim/general/docs/tuple-info/L3Tau.html and DØ Note 4132

Accessor Method used

Et() get ET() float cluster transverse energy
Eta() get detectorEta() float cluster pseudorapidity
Phi() get kineResults()->phi() float cluster azimuthal angle
ToolName() l3mapIter->first string trigger list name of the physics tool that produced

the candidate

Iso() get isolation() float cluster isolation
Emf() get emFraction() float cluster EM fraction
Charge() get charge() int charge
SeedAlgo() get seed algo() int algorithm used (1 = CAL BASED,

2 = TRACK BASED, 3 = NN BASED)
Width() get width() float transverse energy-weighted cluster width
Profile() get profile() float ratio of the sum of the transverse energy of the two

highest transverse energy towers in the cluster to
the total cluster transverse energy

EM12isof() get EM12isof() float profile for the cluster towers contained in the iso-
lation cone of 0.5 only

NNOut() get NN Out() double neural network output value
NTracks() get ntracks() int number of tracks pointing to the cal cluster if

CAL BASED, or number of tracks in track cluster
if TRACK BASED

EM3Eta() get em3 eta() float cluster pseudorapidity in EM3 layer
EM3Phi() get em3 phi() float cluster azimuthal angle in EM3 layer
EM3E() get em3 E() float cluster energy in EM3 layer

30

http://www-d0.fnal.gov/computing/trigsim/general/docs/tuple-info/L3Tau.html
http://www-d0.fnal.gov/cgi-bin/d0note?4132

M01() get m01() float if TRACK BASED, invariant mass of first 2 tracks
M012() get m012() float if TRACK BASED, invariant mass of first 3 tracks
SumPt3() get sumpt3() float if TRACK BASED and more than 3 matching

tracks, sum of |pT | of those extra tracks

A.6.6 L3Muons

The L3Muons branch is a TClonesArray of L3 muon candidates.

Header file: trigsimcert/L3Muon.hpp
Package used to fill the chunk read: l3fMuonTools results
Information taken from l3fmuo local/L3MuoTrack.hpp, l3fMuonTools results/L3MuonPhysicsResults.hpp
and DØ Note 4091

Accessor Method used

Et() get ET() float tranverse energy
Eta() get eta() float pT weighted pseudorapidity
Phi() get phi() float pT weighted azimuthal angle
ToolName() l3mapIter->first string trigger list name of the physics tool

that produced the candidate

Overall muon info

Region() get region() int region (0: central, 1: North [z < 0],
2: South [z > 0])

Octant() get octant() int position octant
Pt() get pT() float tranverse momentum
Z() get z() float z coordinate
Charge() get charge() int charge
Local muon info

EtaLocal() get etaLocal() float pseudorapidity in the A-layer
PhiLocal() get phiLocal() float azimuthal angle in the A-layer
PtLocal() get pTLocal() float transverse momentum of the local

track
ZLocal() get zLocal() float z coordinate of the local track
Quality() get quality() int quality of the local track

(L3MUNONE = 0, L3MUASTUB
= 1, L3MULOOSE = 2,
L3MUMEDIUM = 3, L3MUTIGHT
= 4)

From calorimeter

CalMatched() isCalmatched() bool matched to a calorimeter cluster
CalMatchedRetval() get calmatchReturnInt() int result returned by the calorimeter

match
MTCEtrack() get MTC Etrack() float track energy in the calorimeter

31

http://www-d0.fnal.gov/cgi-bin/d0note?4091

MTCHfrac() get MTC Hfrac() float fraction of hit cells of muon in the
hadronic part of the calorimeter

From central tracker

CentralMatched() isCentralmatched() bool matched to a central track
CentralMatchRetval() get centralmatchReturnInt() int result returned by the central match
ChisqCentral() get chisqCentral() float χ2 of the central track fit
EtaCentral() get etaCentral() float pseudorapidity of the central track
PhiCentral() get phiCentral() float azimuthal angle of the central track
PtCentral() get pTCentral() float transverse momentum of the central

track
ZCentral() get zCentral() float z coordinate of the central track
ImpactXY() get impactXY() float impact parameter of the central

track
SignifImpactXY() get signifImpactXY() float Impact paramemter significance

A.6.7 L3BTagIP

The L3BTagIP branch is a TClonesArray of L3 b tagging results.

Header file: trigsimcert/L3BTagIP.hpp
Package used to fill the chunk read: l3fbtag ip results
Information taken from l3fbtag ip result/src/L3BTagIPPhysicsResults.cpp and
http://www-d0.fnal.gov/computing/algorithms/level3/b-tagging/L3Btag.html

Accessor Method used

ToolName() l3mapIter->first string trigger list name of the physics tool that produced the can-
didate

BTag() get btag() float probability of the presence of a b quark in the event based on
the signed impact parameter significance of tracks belonging
to the leading jets.

A.6.8 L3Isolation

The L3Isolation branch is a TClonesArray of L3 isolation results.

Header file: trigsimcert/L3Isolation.hpp
Package used to fill the chunk read: l3fisolation results
Information taken from l3fisolation/L3TIsolation.hpp

Accessor Method used

ToolName() l3mapIter->first string trigger list name of the physics tool that produced
the candidate

ConeEnergy() getConeEnergy() float energy in hollow cone
TrackIsolation() getTrackIsolation() int track is isolated from the other tracks

32

http://www-d0.fnal.gov/computing/algorithms/level3/b-tagging/L3Btag.html

TrackPtSum() getTrackptSum() float pT sum of swarm tracks inside the cone
Distances() getDistances() float distances of swarm tracks to active track

A.6.9 L3IPTracks

The L3IPTracks branch is a TClonesArray of L3 tracks found by an impact parameter-based algorithm.
It returns the primary vertex information as well as track fit information for each entry.

Header file: trigsimcert/L3IPTrack.hpp
Package used to fill the chunk read: l3fip track results
Information taken from l3fip track results/L3IPTrackPhysicsResults.hpp,
l3fip track/src/L3TIPTracker.cpp and l3ftrack global/L3TGlobalTracker.hpp

Accessor Method used

ToolName() l3mapIter->first string trigger list name of the physics
tool that produced the candi-
date

VertexX() get VertexX() double x coordinate of the vertex
VertexErrX() get VertexErrX() double error on the x coordinate of the

vertex
VertexY() get VertexY() double y coordinate of the vertex
VertexErrY() get VertexErrY() double error on the y coordinate of the

vertex
VertexZ() get VertexZ() double z coordinate of the vertex
VertexErrZ() get VertexErrZ() double error on the z coordinate of the

vertex
TrackRINVUncorr() get TrackRINV UNCORR() double uncorrelated inverse radius of

the track
TrackPTINVUncorr() get TrackPTINV UNCORR() double uncorrelated inverse transverse

momentum of the track
TrackTANLUncorr() get TrackTANL UNCORR() double uncorrelated tanλ of the track
TrackPHIUncorr() get TrackPHI UNCORR() double uncorrelated azimuthal angle of

the track
TrackDCAUncorr() get TrackDCA UNCORR() double uncorrelated distance of closest

approach of the track
TrackZ0Uncorr() get TrackZ0 UNCORR() double uncorrelated z of the track
TrackDCAErrUncorr() get TrackDCAERR UNCORR() double uncorrelated error on the dis-

tance of closest approach of the
track

TrackSIGUncorr() get TrackSIG UNCORR() double uncorrelated significance of the
track fit

TrackRINVCorr() get TrackRINV CORR() double correlated inverse radius of the
track

TrackPTINVCorr() get TrackPTINV CORR() double correlated inverse transverse
momentum of the track

33

TrackTANLCorr() get TrackTANL CORR() double correlated tanλ of the track
TrackPHICorr() get TrackPHI CORR() double correlated azimuthal angle of

the track
TrackDCACorr() get TrackDCA CORR() double correlated distance of closest

approach of the track
TrackZ0Corr() get TrackZ0 CORR() double correlated z of the track
TrackDCAErrCorr() get TrackDCAERR CORR() double correlated distance of closest

approach error of the track
TrackSIGCorr() get TrackSIG CORR() double correlated significance of the

track fit
TrackNSMTHitsXY() get TrackNSMTHitsXY() int number of hits in the axial lay-

ers of the SMT
TrackNCFTHitsXY() get TrackNCFTHitsXY() int number of hits in the axial lay-

ers of the CFT
TrackNSMTHitsZ() get TrackNSMTHitsZ() int number of hits in the stereo lay-

ers of the SMT
TrackNCFTHitsZ() get TrackNCFTHitsZ() int number of hits in the stereo lay-

ers of the CFT

A.6.10 L3Tracks

The L3Tracks branch is a TClonesArray of L3 tracks. All methods in the Method used column of this
table have to be preceded by get Track(). For example, nHitsZ() is actually get Track().nHitsZ().

Header file: trigsimcert/L3Trk.hppx
Package used to fill the chunk read: l3ftrack phys results
Information taken from l3ftrack base/l3ftrack base/L3TrackFit.hpp

Accessor Method used

Et() float transverse momentum
(|1./PtInv()|)

Eta() from getParam(L3TrackParams::TANL) float pseudorapidity
Phi() getParam(L3TrackParams::PHI) float azimuthal angle
ToolName() l3mapIter->first string trigger list name of the physics

tool that produced the candi-
date

PtInv() getParam(L3TrackParams::PTINV) double inverse transverse momentum
Z() getParam(L3TrackParams::Z) double z coordinate (in cm)
DCA() getParam(L3TrackParams::DCA) double distance of closest approach
tanl() float tanλ, derived from Eta()
ChiSq() float Sum of ChiSqXY() and

ChiSqZ()
ChiSqXY() getChiSqXY() float axial fit χ2

ChiSqZ() getChiSqZ() float stereo fit χ2

34

ValidFit() bool both axial and stereo fits
were successful (derived from
ValidXYFit() and ValidZFit())

ValidXYFit() isValidXY() bool the axial fit was successful
ValidZFit() isValidZ() bool the stereo fit was successful
nHitsZ() nHitsZ() int number of hits in stereo layers
nHitsXY() nHitsXY() int number of hits in axial layers
nSMTHitsZ() nSMTHitsZ() int number of hits in SMT stereo

layers
nSMTHitsXY() nSMTHitsXY() int number of hits in SMT axial

layers

A.6.11 L3CFTVertex

The L3CFTVertex branch is a TClonesArray of L3 vertexing results in the CFT.

Header file: trigsimcert/L3CFTVtx.hpp
Package used to fill the chunk read: l3fcft vertex phys results
Information taken from l3fcft vertex/src/L3TCFTVertex.cpp

Accessor Method used

ToolName() l3mapIter->first string trigger list name of the physics tool that produced the can-
didate

X() x() float x coordinate
Y() y() float y coordinate
Z() z() float z coordinate
ErrX() errx() float error on x
ErrY() erry() float error on y
ErrZ() errz() float error on z
Weight() weight() float weight of the vertex
Primary() is primary() bool the vertex is a primary vertex

35

B Example of a Level 1 Histogram Class

//

//

// File: Hl1muon.C

// Author : Steve Beale / Yann Coadou (SFU) for generalisation

// Purpose : histogram class for the L1Muon branch.

// Created : 9 May 2004

//

//

#ifndef L1MUON_H_

#include "trigsimcert/L1Muon.hpp"

#endif

#include "headers.h"

#ifndef HDRAW_H_

#include "HDraw.h" //The histogram drawing class, to be inherited.

#endif

//

// IMPORTANT!!!! //

// If you change the histogram properties you must regenerate the //

// reference file ’Ref.root’: To do this make a ’Plots’ object with the //

// reference file, and then run Loop(true) ie: //

// //

// .x macros/LoadPlots.C //

// Plots anyname("input/file","output/path/dir/"); //

// anyname.Loop(true); //

// //

// Where ’input/file’ is a text file containing the path to the desired //

// reference root tuple, and Ref.root will be placed in //

// ’output/path/dir/Ref.root’ //

// IF YOU DO NOT REGENERATE THE REFERENCE FILE THE PLOTS WILL NOT WORK //

//

class Hl1muon : public HDraw

{

public :

Hl1muon();

~Hl1muon();

void Fill(L1Muon *l2obj);

void DoneEvent();

//Takes a reference file as input and ps file for output

void Draw(TFile *ref,TPostScript *ps,bool debug=false);

Bool_t Save(TFile *file); //returns true for successful save

36

private :

Float_t HISTO1max;

Float_t HISTO1min;

Int_t HISTO1bins;

std::string HISTO1axis;

Float_t HISTO2max;

Float_t HISTO2min;

Int_t HISTO2bins;

std::string HISTO2axis;

Float_t HISTO3max;

Float_t HISTO3min;

Int_t HISTO3bins;

std::string HISTO3axis;

Int_t Nresults; //Number of objects/event

//histogram pointers:

TH1F *HISTO1;

TH1F *HISTO2;

TH1F *HISTO3;

char *THISFILE;

};

Hl1muon::Hl1muon()

{

HISTO1max=256;

HISTO1min=0;

HISTO1bins=256;

HISTO1axis="# central octants";

HISTO2max=256;

HISTO2min=0;

HISTO2bins=256;

HISTO2axis="# North endcap octants";

HISTO3max=256;

HISTO3min=0;

HISTO3bins=256;

HISTO3axis="# South endcap octants";

Nresults = 0;

//make histograms:

HISTO1=new TH1F("l1muon_HISTO1","L1Muon number of central octants",

HISTO1bins,HISTO1min,HISTO1max);

HISTO2=new TH1F("l1muon_HISTO2","L1Muon number of North endcap octants",

HISTO2bins,HISTO2min,HISTO2max);

HISTO3=new TH1F("l1muon_HISTO3","L1Muon number of South endcap octants",

37

HISTO3bins,HISTO3min,HISTO3max);

//Set X axis labels:

HISTO1->GetXaxis()->SetTitle(HISTO1axis.c_str());

HISTO1->GetXaxis()->CenterTitle();

HISTO2->GetXaxis()->SetTitle(HISTO2axis.c_str());

HISTO2->GetXaxis()->CenterTitle();

HISTO3->GetXaxis()->SetTitle(HISTO3axis.c_str());

HISTO3->GetXaxis()->CenterTitle();

//Just set THISFILE

THISFILE = "Hl1muon.C";

std::cout<<"Initializing "<<THISFILE<<std::endl;

}

Hl1muon::~Hl1muon()

{

delete HISTO1;

delete HISTO2;

delete HISTO3;

std::cout<<"Cleared l1muon histograms"<<std::endl;

}

void Hl1muon::Fill(L1Muon *l1obj)

{

HISTO1->Fill(l1obj->nCenTrigOct());

HISTO2->Fill(l1obj->nNorthTrigOct());

HISTO3->Fill(l1obj->nSouthTrigOct());

++Nresults;

}

void Hl1muon::DoneEvent()

{

Nresults=0;

}

Bool_t Hl1muon::Save(TFile *file)

{

if(file!=0)

{

file->cd();

HISTO1->Write();

HISTO2->Write();

HISTO3->Write();

return true;

38

}

else return false;

}

///

// Draw //

///

void Hl1muon::Draw(TFile *ref,TPostScript *ps,bool debug)

{

bool drawref=true;

bool post=true;

if(ref==0) //then do not draw reference

{ drawref=false; }

if(ps==0) //then draw to screen not postscript

{ post=false; }

//Draw stuff

if(post) ps->Off(); //deactivate ps until ready

TCanvas *cl1muon = new TCanvas("cl1muon","cl1muon");

cl1muon->Divide(2,2);

///////////////////////HISTO1////////////////////////////////

cl1muon->cd(1);

TLegend *Leg1=new TLegend(.75,.75,.99,.99,"");

if(drawref)

{

TH1F *HISTO1ref = (TH1F*) ref->Get("l1muon_HISTO1");

DrawHisto(HISTO1,drawref,HISTO1ref,Leg1,"HISTO1",THISFILE);

}

else

DrawHisto(HISTO1,drawref,0,Leg1,"HISTO1",THISFILE);

///////////////////////HISTO2////////////////////////////////

cl1muon->cd(2);

TLegend *Leg2=new TLegend(.75,.75,.99,.99,"");

if(drawref)

{

TH1F *HISTO2ref = (TH1F*) ref->Get("l1muon_HISTO2");

DrawHisto(HISTO2,drawref,HISTO2ref,Leg2,"HISTO2",THISFILE);

}

else

DrawHisto(HISTO2,drawref,0,Leg2,"HISTO2",THISFILE);

39

///////////////////////HISTO3////////////////////////////////

cl1muon->cd(3);

TLegend *Leg3=new TLegend(.75,.75,.99,.99,"");

if(drawref)

{

TH1F *HISTO3ref = (TH1F*) ref->Get("l1muon_HISTO3");

DrawHisto(HISTO3,drawref,HISTO3ref,Leg3,"HISTO3",THISFILE);

}

else

DrawHisto(HISTO3,drawref,0,Leg3,"HISTO3",THISFILE);

if(post){ ps->On(); ps->NewPage();}//reactivate ps and make a new page

cl1muon->Update(); if(post){ ps->Off(); }

if(!debug) cl1muon->Close(); //Keep canvas open if debugging

}

40

C Macros Usage Examples

C.1 Your first trigsimcert session

Let us assume that trigsimcert was run on a file produced by p16 trigsim and then on a file produced by
p17 trigsim. The respective trigsimcert ROOT tree file names were put in text files p16trigcertList and
p17trigcertList in your working directory. Assume also there is a subdirectory there called MyCompar-
isons. You can now go to your working directory and do the following:

setup D0RunII p17.00.00

d0setwa

root -b

Starting ROOT with the -b option prevents canvases created by the macros from popping up. In ROOT,
start by loading and compiling the macros:

root [0] .x trigsimcert/macros/LoadPlots.C

The first time is a bit slow, but the consecutive times will just load the precompiled macros, unless you
have modified them. You can now create a Plots object with the desired input (the p16trigcertList file
list) and output (the MyComparisons directory) parameters:

root [1] Plots YourPlot("p16trigcertList","MyComparisons");

In order to produce a reference histogram set out of this p16 tree, the Loop method of the Plots object
should be called with its argument set to true:

root [2] YourPlot.Loop(true);

This produces a file called Ref.root in MyComparisons, containing all reference histograms. For some
obscure reason known only to ROOT, you should now quit and restart ROOT, and reload the classes:

root [0] .x trigsimcert/macros/LoadPlots.C

Now a new Plots object is instantiated and its Loop method is called, without an argument (by default
it does not make a reference) to produce comparison plots between p16 and p17:

root [1] Plots YourPlot("p17trigcertList","MyComparisons");

root [2] YourPlot.Loop();

Now in the MyComparisons directory you will find a ROOT file, plots.root, similar to the Ref.root file,
containing all histograms from p17. There is also a plots.ps file that contains comparisons between p16
and p17.
The same result can be achieved using the analysis executable, as described in section C.2.

C.2 Your first trigsimcert session using the executable

The same result as what was obtained in section C.1 can be achieved by making an executable out of the
macros. The same configuration is assumed.
The first step is to compile the executable:

41

cd trigsimcert/macros

make

After a few seconds it should produce an executable and give the most important information:

./TrigCertAna -h to see how to use the program

In order to achieve the same results as described in section C.1 one can now execute the following to
produce the reference histograms:

./TrigCertAna -filelist p16trigcertList -name MyComparisons -makeref

Another very similar command line will now produce the comparison plots (just drop the -makeref
argument):

./TrigCertAna -filelist p17trigcertList -name MyComparisons

C.3 Using trigsimcert for a trigger analysis

The trigsimcert macros can be used as the basis for a trigger analysis. Most trigger objects are accessed by
the Plots.C macro, which can be used as a template. Modifying this file, one can then use the machinery
in place to run, compile or produce comparison plots, within ROOT or using the Makefile. The macros
provide examples of how to access the information and it is easy to remove anything unnecessary.
As an example of what is probably of interest for any trigger analyser, here is how one would run the

macros only on events that passed a specific trigger. This code would go in the Plots method of the
Plots.C file:

bool passed = false;

string MyTrigger = "E1_SHT22";

for (int j = 0; j < (ftrigger->GetLast()+1); ++j) {

trigger = dynamic_cast<Trigger*>(ftrigger->At(j));

if (trigger->L3Name() == MyTrigger && trigger->L3Passed()) passed = true;

}

if (passed) { Do my analysis }

42

	1 Introduction
	2 Inputs
	2.1 Input File Formats
	2.2 RCP Parameters
	2.2.1 Framework RCP File
	2.2.2 CertAnalyze RCP File

	2.3 L1L2Chunk
	2.4 L3Chunk

	3 Output
	3.1 Analysis Macros
	3.1.1 General Description
	3.1.2 Histogram Classes
	3.1.3 Histogram Properties
	3.1.4 Adding Histograms to a Class
	3.1.5 Creating a New Histogram Class

	3.2 Examples of Output

	A Classes description
	A.1 Triggers
	A.2 Event
	A.3 Level 1 Triggers
	A.3.1 L1Cal
	A.3.2 L1CalEMTwrs/L1CalTwrs
	A.3.3 L1CalTiles
	A.3.4 L1CTT
	A.3.5 L1Tracks
	A.3.6 L1Muons

	A.4 Level 2 Trigger Preprocessors
	A.4.1 L2EM
	A.4.2 L2Jets
	A.4.3 L2Muons
	A.4.4 L2TracksSTTPT/STTIP/CTT
	A.4.5 L2MEt
	A.4.6 L2CPS
	A.4.7 L2FPS

	A.5 L2 Global Triggers
	A.5.1 L2GblEM
	A.5.2 L2GblMuons
	A.5.3 L2GblMEt
	A.5.4 L2GblTaus
	A.5.5 L2GblMJt
	A.5.6 L2GblInvMass
	A.5.7 L2GblHt
	A.5.8 L2GblTransMass
	A.5.9 L2GblTracks

	A.6 Level 3 Triggers
	A.6.1 L3Electrons
	A.6.2 L3Photons
	A.6.3 L3Jets
	A.6.4 L3MEt/L3Ht
	A.6.5 L3Taus
	A.6.6 L3Muons
	A.6.7 L3BTagIP
	A.6.8 L3Isolation
	A.6.9 L3IPTracks
	A.6.10 L3Tracks
	A.6.11 L3CFTVertex

	B Example of a Level 1 Histogram Class
	C Macros Usage Examples
	C.1 Your first trigsimcert session
	C.2 Your first trigsimcert session using the executable
	C.3 Using trigsimcert for a trigger analysis

