Synchrotron Radiation Background study for Belle

Sanjay Kumar Swain

Stanford Linear Accelerator Center

- Accelerator
- BEAST
- Geometry near IP
- SVD killing situation
- Experience with SVD1.0 Beampipe
- Modification for SVD2.0 Beampipe
- Conclusion

B-factories

machine	KEK-B	PEP-II	CESR
detector	Belle	BaBar	CLEO
Circumference(km) # of rings	3.016 2	2.199 2	0.768 1
E _e +(GeV)	3.5	3.1	5.3
E _e -(GeV)	8.0	9.0	5.3
bunch size (h) " (w) " (l) crossing angle(mrad)	77μm 1.9μm 1.0cm 22	181μm 5.4μm 0.7cm 0	500μm 10μm 1.8cm ±2.3
Luminosity(cm ⁻² s ⁻¹)	10 ³⁴	3 X 10 ³³	1.5 X 10 ³³
#BB/sec	10	3	1.5

Want collision to occur at one location → beam separation (avoid parasitic crossing)

CESR: pretzel orbit interweaving e^+e^- orbits within a single ring crossing angle ± 2.3 mrad

PEP-II: separation by bending magnet e⁺e⁻ beams bend differently head-on collision

KEK-B: finite crossing angle crossing angle = ±11 mrad

Large crossing angle →Luminosity reduction (geometrical)

Machine configuration near Belle

Belle commissioning detector (BEAST)

BEAST : Background Exorcism for A STable Experiment

Goal -> To understand the backgrounds and tune the machine so that backgrounds will be at a tolerable level at the beginning of Belle roll-in and operation

Detector component :

- **1. PIN diodes**
- 2. MOSFETs to measure integrated doses
- 3. Small drift tubes to measure single particle rates and leakage current
- 4. Calorimeter
- 5. Two ladders of silicon vertex detectors

Some of the diodes are located at the same radial and z-position as silicon electronics in the final Belle detector

Two diodes separated by 2 mm Pb

BEAST detector

Front/Back energy deposition ratio:

- > 1 soft photons/charged particles
- < 1 hard photons/charged particles

Ratio from data ~ 2

Drift tubes (Al cylinders with a single wire) 53 tubes distributed in two layers of 21 and 32 tubes at radial distance of 7cm and 45 cm

Simulation: 25 kRad per year at design current and 1 nTorr pressure (readout electronics of SVD)

> SR background α I Particle background α I.P

Partial EFC (BGO Crystals) Inner Chamber (Tubes, PIN Diodes, Mosfets)

Background measured in BEAST ~10 times more

but

the vacuum pressure and the beam optics fine tuning would improve the situation

SVD gain drop

The preamplifier gains in the innermost layer dropped dramatically

Immediate Solutions

EGS4 simulation: To see the effect of SR on silicon detector

Simple geometry used -> small incident angle(~5°) for photons

Immediate Solutions

#of events depositing energy in SI

10000 incident photons

 $20\mu m$ gold stops all the Photons with E < 20KeV

But important: 10 μ m Au inside Be beam pipe equivalent to 20 μ m Au outside Be

 $300 \mu m$ gold coating outside the fiducial region (protect hybrids)

HER downstream is changed to Copper (but it produces 8keV x-rays)

FOR SVD1.5 :

Limit the beam parameter : offset less than 3mm

 $10\mu m$ gold coating inside the beampipe

 $300 \mu m$ gold coating outside the fiducial region

Expected does: 15kRad/year (without 300µm gold coating) : 0.5 kRad/year with gold coating

Dose will be 100 times more if no gold coating inside beampipe

 $E_{c}(keV) = 4.27 B(kG)$

 $P(W/A) = 12.61 I(A) B^{2}(kG) E^{2}(Gev) L(m)$

A slight increase in E_c -> drastic rise in dose

 $E_c = 2keV$ has ~100 times more Silicon dose than $E_c = 1keV$

Limit the offsets at upstream Q's And strengths of steering magnets

Pulse height distribution of SVD hits (single bunch mode)

Version of SVD1.x beampipe

All r=2 cm, Be: He cooling

version	period	comment
SVD1.0	6/99 → 8/99	No gold on Be Rad-soft chip (200kRad)
SVD1.2	10/99 → 7/00	20 μm gold outside Be Rad-soft chip (200kRad)
SVD1.5	10/00 → 8/03	10 μm gold inside Be Rad-tolerant chip (~1MRad)

SVD1.0 beampipe SR burns

Looked from HER upstream side -> along the electron beam

After central Be section has been cut off

Tungsten mask removed

1. SRGEN

Twiss parameters -> beam profile Steps through magnetic field Numerically integrates the power spectrum on a given surface

SR power spectrum on beam pipe surface is passed to

2. EGS4

Photons traced down to 1keV Electrons traced down to 20 keV KEK low-energy improvements (L-edge X-rays) SRGEN Package

SRGEN is a synchrotron radiation generation code. It tracks a beam through the magnetic elements and accumulates spectra on surfaces in the interaction region. The vacuum chamber in the IR is described by a set of elliptical defining apertures. Between each aperture is a surface which smoothly joins the two apertures. Each aperture is describes by semi-major and semi-minor axes of the ellipse and horizontal and vertical offsets of the center of the ellipse w.r.t the magnetic axis. SR is collected on the surface and these surfaces are referred by number.

To run SRGEN:

.lat : magnetic lattice lattice.init : machine lattice initialization file apertures.ap : Aperture input file .in : Initialization file .lat file specifies the magnetic lattice near the IR

Mag1_mnemonic type length start k_or_rho

Mag2_mnemonic type length start k_or_rho

Mag1_mnemoni	: name of the first magnet
Туре	: kind of magnet (dipole or quad)
length	: magnetic length of the element in meter
start	: the position of the $+s$ end of the magnetic element
k_or_rho	: k [m ⁻²] for quad or rho[m] for dipole

k >0 horizontal focussing

Example:

BC3	dipole	0.3444	-25.7265	-499.0000
QC2	quad	2.0652	-6.1671	+0.116325
QC1	quad	0.647	-2.9762	-0.494062
QCS	quad	0.4843	-1.3578	-0.753225

Input files for SRGEN

init file contains lattice specification, the starting and ending positions for the SR generation, and the initial trajectory and Twiss parameters at the starting point

Easy way: start at IP and track outward from there

 $\begin{array}{l} s_start = 0.0 \; s_stop = -8.23 \\ x_{off} = 0.0 \; x_{ang} = 0.0 \; y_{off} = 0.0 \; y_{ang} = 0.0 \; ds = -0.001 \\ \beta_{h} = 0.7 \; \beta_{v} = 0.007 \; \alpha_{h} = 0.0 \; \alpha_{v} = 0.0 \\ \iota_{h} = 0.0 \; \iota_{v} = 0.0 \; \iota_{h}^{'} = 0.0 \; \iota_{v}^{'} = 0.0 \\ \epsilon_{h} = 3.0e\text{-}08 \; \epsilon_{v} = 3.0e\text{-}10 \end{array}$

- Line-1: starting and ending positions along the trajectory over which to calculate SR flux
- Line-2: Initial horizontal displacements and angles ds ->step size to be used in twiss parameter evolution

Line-5: Emittance

ap file specifies the vacuum chamber in the IR and defines the shapes of those surfaces on which SR lands.

Number_of_apertures

ap1_number horiz_radius horiz_offset vert_radius vert_offset z_location material surface_type

ap1_number	: argument to label surface numbers
horiz_radius	: half aperture in horizontal direction
horiz_offset	: horizontal offset of the aperture from magnetic axis
z_location	: z location of the aperture
material	: name of the material (important for SRSIM)
surface_type	: scattering surface this represents

appear in decreasing order of z region between aperture 0 and 1 is surface 0

8

0	0.01300	0.0015328	0.0130	0.0	0.1494
1	0.01000	0.0010919	0.0100	0.0	0.0993 copper pipemask
2	0.00850	-0.0004092	0.0085	0.0	0.0992 copper pipemask
3	0.01000	0.0010897	0.0100	0.0	0.0991 copper pipemask
4	0.01000	-0.001582	0.0100	0.0	-0.1439 beryllium beampipe
5	0.00850	-0.000083	0.0085	0.0	-0.1440 copper backmask
6	0.01000	-0.001584	0.0100	0.0	-0.1441 copper backmask
7	0.01000	-0.002684	0.0100	0.0	-0.2441 copper backmask

SRGEN commands (.in) file

number_of_magnets mag1_mnemonic mag2_mnemonic ... magN_mnemonic number_of_surfaces surf1 surf2 surf3 ... surfN

number_of_magnets : number of magnets for which to perform the integration mag1_mnemonic : mne_monic as specified in .lat file number_of_surfaces : number of vacuum chamber surfaces on which to accumulate SR hits surf1 surf2 surf3 ... : list of surface numbers

> Example : 3 QCS QC1 QC2 2 0 1

SR to be calculated for 3 magnets and collected on two surfaces with surface number 0(beampipe) and 1 (pipe mask).

Final Command to run code and generate histograms: srgen ph.init ph.ap ph.in ph_test

SVD killing situation(1999 summer) and new beam-pipe

Sources of possible v.1 Beampipe Burns

In increasing order of devastation (dose estimation: SREGN + EGS4)

1. Bounced SR from inside QCSL

Shade of tungsten mask tip -> source is just beyond uno mask Bounced SR from BH3, QC2 ?

2. QC2 forward scattering ~ 23kRad/10days

It could hit anywhere on HER mask depending on steering

2. QC2 backward scattering from LER ~ 23kRad/10days

4. BC3 ~ 270kRad/10days

BC3 SR could hit IR if not blocked by 1.1m mask

5. QC1 ~ 480kRad/10days

If y offset of QC2 causes SR hit on IR QC1 should also hit

The 1.1m mask blocks SR of about 1/3 on the inside at HER mask

Two sources of SR backgrounds

• 'Soft' SR background

Caused gain loss of SVD1.0 SR photons from HER upstream + Bare Be beampipe

• 'Hard' SR background

High-pulse height component of SVD CDC leakage current Back-scattering from downstream HER Effect of beam parameters (limit offsets)

Power

'Soft' SR component:

• Tilt 11mrad w.r.t Belle axis

- smaller masks -> less HOM 3mm high masks (HER and LER)
- masks are made of heavy metal (used to be SS, no cooling)
- Be section and cones on axis
- space for cooling tubes for Be section

Sawteeth on HER side

- surface scattering -> tip scattering

 \sim 1/50 dose reduction

Masks away from feducial region
~ 1/10 backscattering dose
(300μm Au foil)

'Hard' SR component:

- LER masks made by heavy metal (Blocks backscattered X-rays)
- Use Cu or W in cone section

Old Mask

New Mask

New beam-pipe is longer , $16cm \rightarrow 24cm$

HER downstream and upstream modification

Dominant source of SR background is from QC2

For 1Amp HER beam, the dose due to tip scattering at HER mask is ~ 0.01kRad/year

If no saw tooth : tip scattering -> surface scattering dose ~ 50 times larger

LER mask back scattering ~ 0.001kRad/year

Without LER mask protection for Be beampipe ~ 28kRad/yr

If the `blast' condition that killed SVD1.0 happens again and continues for one year \sim 12 kRad/year

For SVD1.5 $\,\sim$ 470 kRad/year with 300 μm gold foil

Overall, SR does not seem to be a problem.

- Increase the number of layers , 3 layers \rightarrow 4 layers
- smaller radius for inner-most layer
- Better vertex resolution (α 1/distance 1st detection layer)

An event with new vertex detector

- SR background does not seem to be a problem
- The radiation dose is now as predicted by SRGEN+ EGS4
- For high radiation dose region ->Radiation alarm
- particle background is now protected with better masking system
- HOM heating was the next concern but not that much problem because of varying angle

HER offset ~4.3cm in QCSR exit

 $E_c = 38 \text{keV}$

Power = 25 kW/A

Dumped on a beampipe surface that has direct line of sight to IR beam pipe

Be section is bare ~ transparent Cone is AL; λ(Al)= 0.6cm -> penetrates the cone section

Measure taken for SVD1.2 (1999 fall) 'SR dump' beam pipe Al -> Cu (1/10) (also extra Pb masks around upstream beam pipe for particle backgrounds) SVD killing situation(1999 summer) and new beam-pipe

• Use Cu or Au for cone section (back scattered QCSR 40keV X-rays)

• LER side mask made `heavy' metal Blocks backscattered X-rays for $E_{\gamma} < 100 \text{keV}$

Overall, SR does not seem to be a problem. Dominant: backscattered hard SR ~10kRad

HER side optics near IR

Belle Detector

• Outline of KEKB straight sections

Future upgrade planned for 2005 [luminosity:factor of 2]

For a finite crossing angle \rightarrow Geometrical luminosity loss \rightarrow Beam instability

Without crab cavities:

Scattering of X-rays

Photo electric effect	$E_{scatt} = E_{k,L edges}$
Compton scattering	E _{scatt} = E _{incident}
Rayleigh scattering	$E_{scatt} = E_{incident}$

Reflection rate and angular distribution: Interplay of how the scattering occur and how much is absorbed before exit

