

Vertex Detector Mechanical Design: Status and Issues

Bill Cooper Fermilab

Proposed VXD Barrel Changes

- Changes are proposed to address two comments made in the December SiD meeting.
 - The December geometry was too open.
 - Passing ladders through up to 4 openings could be difficult.
- The idea of gluing, rather than using fasteners, to build sub-assemblies would be retained.
 - Extensive use of fasteners appears to contribute too much material.
 - Fasteners would still be used to join sub-assemblies.
- Operation at T > -10° C has been suggested for the design concept document.
 - A consequence is that the effects of the small CTE mismatch between silicon and carbon fiber are reduced.
 - That allows greater freedom in the ways in which CF can be used.
- VXD still clam-shells as left-right (top-bottom?) halves.

• Si D •

• <u>Si</u>D •

Proposed Changes

- Build CF polygonal support cylinders which cover 180°.
 - Cylinders would be single-walled with 3 or 4 plies.
 - 180° annular rings at each end would control out-of-round.
 - Openings in those rings would be large enough to pass a cable and its connector, but not the full width of a sensor.
 - To control material (~0.11% RL for 4 plies of solid CF), openings would be cut into CF leaving lattice-work.
 - It may be feasible to remove ~75% of material.
 - Sensors would be glued to the CF with required electrical insulation / connections.
 - Up to 15 sensors would be in a cylinder sub-assembly.
- CF end membranes spanning all cylinder radii would form the set of 5 (6?) cylinders into a 180° half-barrel.
 - ~3 fasteners at each end of a cylinder
 - End membranes would have openings to reduce material and provide cable and cooling gas passages.

End View

2 types of sensors —> some adjustments to radii.

• SiD

Comments

- All sensors are on the outer surface of CF.
- A & B layer 1 geometry is shown.
 - Spiral geometry will be checked, also.
- A & B layers have been placed leaving 0.5 mm gaps between sensors.
- Other openings would be added in end rings, but their geometry has not been calculated yet.
 - Reduce mass
 - Allow air flow

• <u>Si</u>D •

Features

- CF cylinders address beam-like deflection, so sensor assemblies can be thinner.
 - For sensors which are adjacent in phi, that allows the delta R between the edge of one sensor and the surface of the next to be decreased (improves hermeticity).
 - Sensor sensor gap is drawn as 0.5 mm.
- End rings would be glued to a cylinder while the cylinder is still on a support mandrel.
- We need to optimize the geometry of material which remains after openings have been cut.
 - The U. of Washington will begin FEA to do that.

• Barrel sensors are drawn 125 mm long.

• <u>Si</u>D •

Elevation View

- Longer barrels begin hitting beam pipe and VXD disks.
- Disks may move outward in Z to increase lever arm.
- Outer radii would be adjusted to maintain coverage.

• SiD • Elevation View

- Only A-layer CF and cables are shown.
- Cables for layers 3 5 (& maybe 2) are thought to run outward.

• $S_i D$ •

Questions

- 6 mm x 2 mm openings for cables are shown in layer 1, and 11 mm x 2 mm in other layers.
 - Can opening sizes be reduced or are they already too small?
- A border of 0.25 mm has been drawn between active region and cut edge of each sensor.
 - Can that be reduced, or is it already too small?
- As noted, no extra length is presently drawn for readout.
 - Is that acceptable?
- How much power?
 - Total (could be difficult if > 20 watts)
 - Per location
 - Per unit area

• SiD •

- A similar design philosophy is assumed, that is, sensors glued to 3 or 4 plies of a CF.
 - Openings would be cut to reduce CF material by a factor of $\sim \frac{1}{4}$.
 - To provide overlap, sensors of a half-disk would be at 4 Zlocations.
 - Sensors at a given Z would all be attached to an individual CF membrane, so 4 membranes for a half-disk assembly.
 - Material left after openings are created would be non-aligned to the extent practical from one membrane to the next.
- The assumption is that disk readout connections would originate near the outer edge.
- What are the limitations (if any) on the shape of the active area of a disk sensor?
 - Can true wedges be made?
- Questions for barrels apply to disks.

Back-up Slides Follow

VXD Barrel Material

	SLD VXD3	Sid VXD	
Beampipe liner	Τi 50μm 0.14%	Τi 25μm 0.07%	
Beampipe	Be 760μm 0.22%	Be 400μm 0.07%	
Inner gas shell	Be 560µm 0.16%	(Note 1) 0	
Ladder/layer	0.41%	0.11%	
Outer gas shell	Be mesh 0.48%	0.28%	
Cold N2 Gas	0.05%	0.05%	
Cryostat coating	AI 500μm 0.58%	0.22%	
Cryostat foam	Urethane 0.44%	NilFlam 0.12%	

Su Dong

Note 1) Cooling gas can be brought in from two ends

Endcap Region Material

	SLD VXD3		Sid VXD
Barrel Endplate	Be/Fe/gap 3mm	1.5%	Composite ? 0.5%
Barrel support annulus	Be	~2.4%	1.0% ?
Ladder blocks	Al ₂ O ₃ (smeared)	3.0%	1.0% ?
Striplines	Kapton/Cu (face on)	0.5%	0.2%
Stripline clamp support	Be plate with holes	~1.0%	0
Stripline connectors	Hit it 0.4%; smear	0.14%	0
Cryostat	Foam	0.4%	0.4%

- What to replace the sliding blocks ?
- Readout can be replaced by optical system similar to ATLAS (T>-10C)
- with a very small transceiver and very thin fibers.
- Still needs power strips
- No need of clamp and connectors in active fiducial volume.

• <u>Si</u>D •

Beampipe Liner

Liners help taking out low energy synchrotrons, but is the attenuation adequate for high energy synchrotrons ?

Bill Cooper

Detector Open with Full Access to Inner Detector

16

Silicon Tracking Layout

• Outer tracker (microstrips)

• Si D •

- 5 barrel layers
- 5 disks per end
- OR = 1.25 m
- IR = 0.2 m
 - May need to adjust inner radius to match beam-line elements
- Supported from ECAL
- Inner detector (pixels)
 - VXD
 - 5 barrel layers (may increase to 6)
 - 4 disks per end
 - Additional "forward" disks
 - Supported from conical portions of beam pipe

• SiD • Concept of Inner Detector (VXD) Support

- To allow installation on the beam pipe, the inner detector and its support structures are based upon half-cylinders.
- Outer support half-cylinders could be thermally insulating
 - Detector elements are supported from those half-cylinders.
- Support half-disks couple to the beam pipe at approximately $Z = \pm 0.2$ m and $Z = \pm 0.9$ m and aid in maintaining beam pipe straightness.
- To reduce material, many of the support structures could be lattice-like.

VXD Barrel Concepts (1)

- Ladders are designed taking into account support from two or four CF membranes.
 - Thickness of each membrane ~ 0.26 to 0.39 mm (0.11% to 0.16% of a radiation length for membranes with no holes.
- Ladders pass through openings in the membranes.
 - 1.8 mm of material is retained at nearest membrane openings.
 - We know that is sufficient to allow membrane fabrication.
- Flexibility of the membranes is tuned to provide good x and y positioning and to allow a difference between ladder thermal contraction and thermal contraction of an outer support cylinder.
 - CF thickness and geometry of openings determine flexibility.
 - Between the outermost ladders and the inner surface of that support cylinder, membranes can be mostly holes.

• Si D •

VXD Barrel Concepts (2)

- There are clear advantages in being able to remove ladders from a completed barrel, but:
 - Pin a socket or equivalent connections are likely to be needed.
 - They do not appear to be needed to accommodate thermal contraction.
 - They add significant material.
- An alternative which reduces material would be to glue ladders into place.
 - For that option, a barrel could be divided in phi into six mating pieces.
 - Must split into two halves in any case to allow assembly on beam pipe.
 - For the geometry drawn, each piece would include 16 ladders
 - D0 has recently assembled a L0 silicon detector with 48 sensors glued into place. ~0.025% channels damaged during assembly

• Si D •

• SD • Dec. 2005 End View of the VXD Barrel Array

- Ladders with inward facing sensors are shown.
- Sensors could equally well face outward.
- Note that 6-fold symmetry is shown.

Sensors: IR = 14, 25.5, 37, 48.5, 60 mm Active widths: 8.549, 17.443 mm Cut widths: 10.149, 19.043 mm Tilt angles: 18.8, 23.2, 21.7, 20.9, 20.3 degrees Beam pipe IR: 12 mm Beam pipe OR: 12.4 mm December 7, 2005

Example of Sensor Overlap

• Considerations:

• Si D

- Pt below which a trajectory can pass between sensor active areas (0.2 GeV/c shown for B = 5 T)
- Closest approach of trajectory to x = y = 0 (2.388 mm shown)

· SiD · Basic Ladder Dimensions

- 0.1 mm thick x 125 mm long sensors
- 0.15 mm thick x 20 mm long readout regions
- 0.05 mm glue thickness
- 1.2 mm thick x 165 mm long foam (SiC foam presently assumed)
- Ladder and membrane opening dimensions are shown below

Deflections under Gravity (1)

- Assumes simple support of ladder by two membranes
- Deflection OK with support points moved inward
- Forces from cables are an issue which could argue for four, rather than two, membranes.

Si D

Deflections under Gravity (2)

- Assumes support of ladder by four membranes
 - Inserting through holes would require good fixturing.
- Deflections are forced to 0 at the support points.
- Inner membranes would be floated from ladders.
 - Only the outer membranes would tie to an outer support cylinder.

Si D .

SiD Meeting – 27 January 2006