Higgs Self Coupling Systematic Error from HZZ & HHZZ Coupling Uncertainties

Tim Barklow (SLAC), Keisuke Fujii (KEK), Junping Tian (U. Tokyo) Jun 15, 2016

Higgs Self Coupling Systematic Error

Uncertainties for g_{ZZH} g_{ZZHH} in $\sigma(e^+e^- \rightarrow HHZ)$

We assume that $\sigma(e^+e^- \rightarrow HHZ)$ can be described by an effective field theory (EFT) containing a general $SU(2) \times U(1)$ gauge invariant Lagrangian with dimension-6 operators in addition to the SM.

Using the convention of arXiv:1310.5150 we have, before EWSB, the following dim-6 operators:

$$\mathcal{L}_{\text{SILH}} = \frac{\bar{c}_{H}}{2v^{2}} \partial^{\mu} \left[\Phi^{\dagger} \Phi \right] \partial_{\mu} \left[\Phi^{\dagger} \Phi \right] + \frac{\bar{c}_{T}}{2v^{2}} \left[\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \right] \left[\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi \right] - \frac{\bar{c}_{6} \lambda}{v^{2}} \left[\Phi^{\dagger} \Phi \right]^{3} \\ + \frac{ig \ \bar{c}_{W}}{m_{W}^{2}} \left[\Phi^{\dagger} T_{2k} \overleftrightarrow{D}^{\mu} \Phi \right] D^{\nu} W_{\mu\nu}^{k} + \frac{ig' \ \bar{c}_{B}}{2m_{W}^{2}} \left[\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi \right] \partial^{\nu} B_{\mu\nu} \\ + \frac{2ig \ \bar{c}_{HW}}{m_{W}^{2}} \left[D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi \right] W_{\mu\nu}^{k} + \frac{ig' \ \bar{c}_{HB}}{m_{W}^{2}} \left[D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \right] B_{\mu\nu} \\ + \frac{g'^{2} \ \bar{c}_{\gamma}}{m_{W}^{2}} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \text{ other operators that are not relevant or that violate CP$$

Note there are only 8 EFT parameters: $\overline{c}_H = \overline{c}_T = \overline{c}_6 = \overline{c}_W = \overline{c}_{HW} = \overline{c}_{HB} = \overline{c}_{\gamma}$

Now add the CP violating terms:

$$\mathcal{L}_{CP} = \frac{ig \ \tilde{c}_{HW}}{m_W^2} D^{\mu} \Phi^{\dagger} T_{2k} D^{\nu} \Phi \widetilde{W}^k_{\mu\nu} + \frac{ig' \ \tilde{c}_{HB}}{m_W^2} D^{\mu} \Phi^{\dagger} D^{\nu} \Phi \widetilde{B}_{\mu\nu} + \frac{g'^2 \ \tilde{c}_{\gamma}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} \widetilde{B}^{\mu\nu}$$
$$' + \frac{g^3 \ \tilde{c}_{3W}}{m_W^2} \epsilon_{ijk} W^i_{\mu\nu} W^{\nu j}_{\ \rho} \widetilde{W}^{\rho\mu k}$$

where the dual field strength tensors are defined by

$$\widetilde{B}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} B^{\rho\sigma} , \quad \widetilde{W}^k_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} W^{\rho\sigma k}$$

This gives 4 additional EFT parameters: \tilde{c}_{HW} \tilde{c}_{HB} \tilde{c}_{γ} \tilde{c}_{3W}

After EWSB we have
$$\mathcal{L} = \mathcal{L}_{3} + \mathcal{L}_{4} + \mathcal{L}_{3V}$$
 where

$$\mathcal{L}_{3} = -\frac{m_{H}^{2}}{2v}g_{hhh}^{(1)}h^{3} + \frac{1}{2}g_{hhh}^{(2)}h\partial_{\mu}h\partial^{\mu}h$$

$$-\frac{1}{4}g_{hzz}^{(1)}Z_{\mu\nu}Z^{\mu\nu}h - g_{hzz}^{(2)}Z_{\nu}\partial_{\mu}Z^{\mu\nu}h + \frac{1}{2}g_{hzz}^{(3)}Z_{\mu}Z^{\mu}h$$

$$-\frac{1}{2}g_{hww}^{(1)}W^{\mu\nu}W_{\mu\nu}^{\dagger}h - \left[g_{hww}^{(2)}W^{\nu}\partial^{\mu}W_{\mu\nu}^{\dagger}h + \text{h.c.}\right] + g(1 - \frac{1}{2}\bar{c}_{H})m_{W}W_{\mu}^{\dagger}W^{\mu}h$$

$$\mathcal{L}_4 = -\frac{1}{8}g^{(1)}_{hhzz}Z_{\mu\nu}Z^{\mu\nu}h^2 - \frac{1}{2}g^{(2)}_{hhzz}Z_{\nu}\partial_{\mu}Z^{\mu\nu}h^2 + \frac{1}{4}g^{(3)}_{hhzz}Z_{\mu}Z^{\mu}h^2$$

$$\mathcal{L}_{3V} = \left[i g_{aww}^{(1)} W_{\mu\nu}^{\dagger} A^{\mu} W^{\nu} + \text{h.c.} \right] + i g_{aww}^{(2)} F_{\mu\nu} W^{\mu} W^{\nu\dagger} + \left[i g_{zww}^{(1)} W_{\mu\nu}^{\dagger} Z^{\mu} W^{\nu} + \text{h.c.} \right] + i g_{zww}^{(2)} Z_{\mu\nu} W^{\mu} W^{\nu\dagger}$$

In the SM at tree level

$$g_{aww}^{(1)} = g_{aww}^{(2)} = e \qquad g_{zww}^{(1)} = g_{zww}^{(2)} = gc_{\theta_W} \qquad g_{aww}^{(1)} = g_{hhh}^{(1)} = 1 \qquad g_{hzz}^{(3)} = \frac{gM_W}{c_{\theta_W}^2} \qquad g_{hhzz}^{(3)} = \frac{g^2}{2c_{\theta_W}^2}$$

and all other $g_{xxx}^{(j)}$, $g_{xxxx}^{(j)} = 0$

And the CP violating piece $\mathcal{L}_{CP} = \mathcal{L}_{3_{CP}} + \mathcal{L}_{4_{CP}} + \mathcal{L}_{3_{V_{CP}}}$ where

$$\mathcal{L}_{3_{CP}} = -\frac{1}{4}\tilde{g}_{hzz}Z_{\mu\nu}\tilde{Z}^{\mu\nu}h - \frac{1}{2}\tilde{g}_{hww}W^{\mu\nu}\tilde{W}^{\dagger}_{\mu\nu}h$$

$$\mathcal{L}_{4_{CP}} = -\frac{1}{8} \tilde{g}_{hhzz} Z_{\mu\nu} \tilde{Z}^{\mu\nu} h^2$$

$$\mathcal{L}_{3V_{CP}} = i\tilde{\kappa}_{\gamma}W^{\dagger}_{\mu}W_{\nu}\tilde{F}^{\mu\nu} + i\frac{\tilde{\lambda}_{\gamma}}{M_{W}^{2}}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}\tilde{F}^{\nu\lambda} + i\tilde{\kappa}_{z}W^{\dagger}_{\mu}W_{\nu}\tilde{F}^{\mu\nu} + i\frac{\tilde{\lambda}_{z}}{M_{W}^{2}}W^{\dagger}_{\lambda\mu}W^{\mu}_{\nu}\tilde{F}^{\nu\lambda}$$

In the SM at tree level all $\tilde{g}_{xxx}^{(j)}$, $\tilde{g}_{xxxx}^{(j)}$, $\tilde{\kappa}_x$, $\tilde{\lambda}_x = 0$

The couplings $g_{xxx}^{(j)}$ and $g_{xxxx}^{(j)}$ take the following form in our EFT:

$$g_{hhh}^{(1)} \qquad 1 + \frac{7}{8}\bar{c}_6 - \frac{1}{2}\bar{c}_H$$

$$g_{hhh}^{(-)} \qquad \qquad \frac{g}{m_W} \bar{c}_H$$

$$g_{hzz}^{(1)} \qquad \frac{2g}{c_W^2 m_W} \Big[\bar{c}_{HB} s_W^2 - 4 \bar{c}_\gamma s_W^4 + c_W^2 \bar{c}_{HW} \Big] \\g_{hzz}^{(2)} \qquad \frac{g}{c_W^2 m_W} \Big[(\bar{c}_{HW} + \bar{c}_W) c_W^2 + (\bar{c}_B + \bar{c}_{HB}) s_W^2 \Big] \\g_{hzz}^{(3)} \qquad \frac{gm_W}{c_W^2} \Big[1 - \frac{1}{2} \bar{c}_H - 2 \bar{c}_T + 8 \bar{c}_\gamma \frac{s_W^4}{c_W^2} \Big]$$

 \overline{c}_6 is uniquely accessible through the Higgs self coupling measurement. The other 7 EFT parameters appear in several places.

$$g_{hww}^{(1)} \qquad \qquad \frac{2g}{m_W} \bar{c}_{HW}$$

$$g_{hww}^{(2)} \qquad \qquad \frac{g}{m_W} \left[\bar{c}_W + \bar{c}_{HW} \right]$$

$$\begin{cases} g_{hhzz}^{(1)}, g_{hhzz}^{(2)}, g_{hhaz}^{(1)}, g_{hhaz}^{(2)}, g_{hhww}^{(1)}, g_{hhww}^{(2)} \end{cases} & \frac{g}{2m_W} \left\{ g_{hzz}^{(1)}, g_{hzz}^{(2)}, g_{haz}^{(1)}, g_{haz}^{(2)}, g_{hww}^{(1)}, g_{hww}^{(2)} \right\} \\ g_{hhzz}^{(3)} & \frac{g^2}{2c_W^2} \left[1 - 6\bar{c}_T - \bar{c}_H + 8\bar{c}_\gamma \frac{s_W^4}{c_W^2} \right] \end{cases}$$

Note the relationships between the *hzz* & *hhzz* couplings.

 $g_{aww}^{(1)} = e \left[1 - 2\bar{c}_W \right]$ $g_{aww}^{(2)} = e \left[1 - 2\bar{c}_W - \bar{c}_{HB} - \bar{c}_{HW} \right]$ $g_{zww}^{(1)} = \frac{g}{c_W} \left[c_W^2 - \bar{c}_{HW} + (2s_W^2 - 3)\bar{c}_W \right]$ $g_{zww}^{(2)} = \frac{g}{c_W} \left[c_W^2 (1 - \bar{c}_{HW}) + s_W^2 \bar{c}_{HB} + (2s_W^2 - 3)\bar{c}_W \right]$

The TGC's depend on \overline{c}_W , \overline{c}_{HW} , \overline{c}_{HB} through the Goldstone bosons that are eaten by the *Z* and *W* fields

The CP violating couplings \tilde{g}_{hzz} \tilde{g}_{hhzz} $\tilde{\kappa}_{\gamma}$ $\tilde{\lambda}_{\gamma}$ $\tilde{\kappa}_{z}$ $\tilde{\lambda}_{z}$ take the following form in our EFT

$$\begin{split} \tilde{g}_{hzz} &= \frac{2g}{c_{\theta w}^2 M_W} \Big[\tilde{c}_{HB} s_{\theta w}^2 - 4 \tilde{c}_{\gamma} s_{\theta w}^4 + c_{\theta w}^2 \tilde{c}_{HW} \Big] \\ \tilde{g}_{hhzz} &= \frac{g}{2M_W} \tilde{g}_{hzz} \\ \tilde{\kappa}_{\gamma} &= \tilde{c}_{HB} + \tilde{c}_{HW} - \frac{8M_W^2}{v^2} \tilde{c}_{3W} \\ \tilde{\lambda}_{\gamma} &= -\frac{8M_W^2}{v^2} \tilde{c}_{3W} \\ \tilde{\lambda}_{\zeta} &= -\frac{s_{\theta w}}{c_{\theta w}} \tilde{c}_{HB} + \frac{c_{\theta w}}{s_{\theta w}} \tilde{c}_{HW} - \frac{8M_W^2}{v^2 s_{\theta w}} \tilde{c}_{3W} \\ \tilde{\lambda}_{Z} &= -\frac{8M_W^2}{v^2 s_{\theta w}} \tilde{c}_{3W} \end{split}$$

The parameters \overline{c}_W , \overline{c}_B , \overline{c}_T are constrained by electroweak precision tests. From arXiv:1410.7703 :

	Coefficient	LEP Constraints	
Operator		Individual	Marginalized
$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu}$ $\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu}$	$\frac{m_W^2}{\Lambda^2}(c_W + c_B)$	(-0.00055, 0.0005)	(-0.0033, 0.0018)
$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^2$	$\frac{v^2}{\Lambda^2} c_T$	(0, 0.001)	(-0.0043, 0.0033)

By definition
$$\overline{c}_W \equiv \frac{M_W^2}{\Lambda^2} c_W$$
, $\overline{c}_T \equiv \frac{v^2}{\Lambda^2} c_T$, etc.

We will assume in the following that, at the 10^{-3} level, $\overline{c}_W = -\overline{c}_B \qquad \overline{c}_T = 0$

The CP violating parameters \tilde{c}_{HB} , \tilde{c}_{HW} , \tilde{c}_{3W} are constrained by the electric dipole moment of the neutron $|d_{\text{neutron}}| < 1.2 \times 10^{-25} \ e \ \text{cm} \implies \tilde{\lambda}_{\gamma} < 2.5 \times 10^{-4}$ and $\tilde{\kappa}_{\gamma}$ even smaller (?) We can assume $\tilde{c}_{3W} = 0$ and $\tilde{c}_{HB} = -\tilde{c}_{HW}$ at the 10⁻⁴ level which leads to $\tilde{c}_{HW} = c_{\theta_W} s_{\theta_S} \tilde{\kappa}_Z$

F. BOUDJEMA, K. HAGIWARA, C. HAMZAOUI, AND K. NUMATA

TABLE II. Contributions of the four anomalous $WW\gamma$ couplings λ_{γ} , $\tilde{\lambda}_{\gamma}$, $\Delta \kappa_{\gamma}$, and $\tilde{\kappa}_{\gamma}$ of Eq. (1.1) to the four electromagnetic form factors of a fermion. The unit, the meaning of signs, and the neglected pieces are the same as those in Table I.

	R_{f}	A_f	$\Delta \mu_f$	d_f
λγ	$\pm 6\lambda_{\gamma} \ln \frac{\Lambda^2}{m_W^2}$	$\pm \lambda_{\gamma} m_f^2 \ln \frac{\Lambda^2}{m_W^2}$	$\sim \pm \lambda_{\gamma} m_f$	
$\Delta \kappa_{\gamma}$	$\pm \frac{3}{2}\Delta\kappa_{\gamma}\frac{\Lambda^2}{m_W^2}$	$\pm \frac{1}{4} \Delta \kappa_{\gamma} m_f^2 \frac{\Lambda^2}{m_W^2}$	$\pm \Delta \kappa_{\gamma} m_f \ln \frac{\Lambda^2}{m_W^2}$	
$\tilde{\lambda}_{\gamma}$	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$\sim \pm \tilde{\lambda}_{\gamma} m_{f_{\gamma}}$
$\tilde{\kappa}_{\gamma}$				$\pm \widetilde{\kappa}_{\gamma} m_f \ln \frac{\Lambda^2}{m_W^2}$

The TGC's
$$\Delta \kappa_{\gamma}$$
 and Δg_1^Z are related to EFT parameters by
 $\Delta \kappa_{\gamma} = \overline{c}_{HW} + \overline{c}_{HB}$
 $\Delta g_1^Z = \overline{c}_W + \overline{c}_{HW}$

At ILC with the full H-20 scenario the error on the TGC's are

$$\Delta(\Delta \kappa_{\gamma}) = 2 \times 10^{-4}$$
$$\Delta(\Delta g_1^Z) = 8 \times 10^{-4}$$

We can then assume at the 10⁻³ level that $\overline{c}_W = -\overline{c}_{HW} = \overline{c}_{HB}$

so that we can write $g_{hzz}^{(2)}$ and $g_{hww}^{(2)}$ as

$$g_{hzz}^{(2)} = \frac{g}{c_{\theta_W}^2 M_W} \Big[\Delta g_1^Z c_{\theta_W}^2 + \Delta \kappa_\gamma s_{\theta_W}^2 \Big] \approx 0$$
$$g_{hww}^{(2)} = \frac{g}{M_W} \Delta g_1^Z \approx 0$$

coupling	$error \times 10^{-4}$				
	$\sqrt{s} = 500 \mathrm{GeV}$	$\sqrt{s} = 800 \mathrm{GeV}$			
C,P-conserving, $SU(2) \times U(1)$ relations:					
$\Delta g_1^{ m Z}$	2.8	1.8			
$\Delta \kappa_{\gamma}$	3.1	1.9			
λ_{γ}	4.3	2.6			
C,P-conserving, no relations:					
$\Delta g_1^{ m Z}$	15.5	12.6			
$\Delta \kappa_{\gamma}$	3.3	1.9			
λ_γ	5.9	3.3			
$\Delta \kappa_{ m Z}$	3.2	1.9			
$\lambda_{ m Z}$	6.7	3.0			
not C or P conserving:					
g_5^Z	16.5	14.4			
g_4^Z	45.9	18.3			
$ ilde{\kappa}_{ m Z}$	39.0	14.3			
$\widetilde{\lambda}_{\mathrm{Z}}$	7.5	3.0			

Tesla TDR

Table 5.1.1: Results of the single parameter fits (1σ) to the different triple gauge couplings. For $\sqrt{s} = 500 \text{ GeV } \mathcal{L} = 500 \text{ fb}^{-1}$ and for $\sqrt{s} = 800 \text{ GeV } \mathcal{L} = 1000 \text{ fb}^{-1}$ has been assumed. For both energies $\mathcal{P}_{e^-} = 80\%$ and $\mathcal{P}_{e^+} = 60\%$ has been used.

For H20 $\Delta \tilde{\kappa}_{Z} = 0.0039 / \sqrt{8} \implies \Delta \tilde{c}_{HW} = c_{\theta w} s_{\theta s} \Delta \tilde{\kappa}_{Z} = 0.0011$ So we conclude $\tilde{c}_{HW} = 0$ at the 10^{-3} level, leaving us with one remaining CP violating parameter \tilde{c}_{γ}

Through EWPT's and ILC measurements of TGC's the number of independent EFT parameters has been reduced from 12 to just 5: \overline{c}_H , \overline{c}_{γ} , \overline{c}_{HW} , \overline{c}_{6} , \tilde{c}_{γ}

The parameters \overline{c}_H , \overline{c}_{γ} , \overline{c}_{HW} , \tilde{c}_{γ} are related to the measured g_{HWW} , g_{HZZ} , b_z , \tilde{b}_z couplings via

$$\overline{c}_{H} = 2\left(1 - \frac{g_{HWW}}{gM_{W}}\right) \qquad \overline{c}_{\gamma} = \frac{c_{\theta_{W}}^{2}}{8gM_{W}s_{\theta_{W}}^{4}} \left[c_{\theta_{W}}^{2}g_{HZZ} - g_{HWW}\right]$$
$$\overline{c}_{HW} = \frac{1}{1 - t_{\theta_{W}}^{2}} \left[\frac{1}{2gM_{W}}(g_{HZZ} - \frac{1}{c_{\theta_{W}}^{2}}g_{HWW}) - \frac{b_{z}}{4}\right] \qquad \tilde{c}_{\gamma} = \frac{c_{\theta_{W}}^{2}}{16s_{\theta_{W}}^{4}}\tilde{b}_{z}$$

 g_{HWW} , g_{HZZ} are the usual couplings of the Higgs to W & Z

The "*b*" and " \tilde{b} " parameters are the anomalous *HVV* Lorentz structure coefficients studied by Fujii, Tian, Ogawa and others:

HWW arXiv:1011.5805

HZZ Talk by T. Ogawa at LCWS15 http://agenda.linearcollider.org/event/6662/

The full EFT Lagrangian can be written using the measured variables $g_{HZZ} g_{HZZ} b_z \tilde{b}_z$ and the one remaining unconstrained EFT parameter \overline{c}_6

$$\mathcal{L} = -\frac{M_{H}^{2}}{2v} \left(\frac{\mathbf{g}_{HWW}}{gM_{W}} + \frac{7}{8} \overline{c_{6}} \right) h^{3} + \frac{g}{M_{W}} \left(1 - \frac{\mathbf{g}_{HWW}}{gM_{W}} \right) h \partial_{\mu} h \partial^{\mu} h + \frac{b_{z}}{4v} Z_{\mu\nu} Z^{\mu\nu} h + \frac{1}{2} \mathbf{g}_{HZZ} Z_{\mu} Z^{\mu} h + \frac{\tilde{b}_{z}}{4v} Z_{\mu\nu} \tilde{Z}^{\mu\nu} h + \frac{b_{z}}{8v^{2}} Z_{\mu\nu} Z^{\mu\nu} h^{2} + \frac{g^{2}}{8c_{\theta_{W}}^{2}} \left(\frac{\mathbf{g}_{HWW}}{gM_{W}} + c_{\theta_{W}}^{2} \frac{\mathbf{g}_{HZZ}}{gM_{W}} - 1 \right) Z_{\mu} Z^{\mu} h^{2} + \frac{\tilde{b}_{z}}{8v^{2}} Z_{\mu\nu} \tilde{Z}^{\mu\nu} h^{2}$$

In this EFT approach all of the couplings in the calculation of $\sigma(e^+e^- \rightarrow HHZ)$ are tightly constrained by the other Higgs coupling measurements, TGC measurements, and EWPT's. The only unconstrained parameter is the anomalous Higgs self coupling \overline{c}_6 , which is uniquely accessed through the measurement of $\sigma(e^+e^- \rightarrow HHZ)$.

The unmeasured ZZHH quartic coupling is related to the HZZ and HWW couplings, which are measured to 0.3% and 0.4%, respectively, at the ILC in the H-20 scenario. The systematic error due to the unmeasured quartic coupling is therefore very small.

FCC-ee Higgs Self Coupling Measurement at Ecm=240 GeV

à

M. McCullough, arXiv:1312.3322

 g_{hZZ} fixed to SM value ($\delta_z = 0$) g_{hhZZ} fixed to SM value

$$\Rightarrow \delta_H = \frac{\delta_{\sigma}^{240}}{0.014} = \frac{0.004}{0.014} = 29\%$$

$$\delta_{\sigma}^{240} = 100 \left(2\delta_{Z} + 0.014\delta_{h} \right) \%$$

Examples of
BSM physics

f = decay constant of pNGB Higgs Coupling deviation contributes to precision electrowea

Pre-LHC constraints as good as reach of LHC Higgs $\rightarrow \delta \kappa_V \le 5\%$ coupling measurements

(Not-so) Hidden New Physics

· Thus, due to extremely high precision measurements, in this very challenging scenario an e⁺e⁻ collider offers the possibility of discovering the indirect effects of hidden

· Cross section at CEPC modified by:

$$\delta\sigma_{Zh} = \frac{|c_{\phi}|^2}{8\pi^2} \frac{v^2}{m_h^2} \left(1 + \frac{1}{4\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}} \log \left[\frac{1 - 2\tau_{\phi} - 2\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}}{1 - 2\tau_{\phi} + 2\sqrt{\tau_{\phi}(\tau_{\phi} - 1)}} \right] \right)$$

where $\tau_{\phi} = m_h^2/4m_{\phi}^2$ and $\delta\sigma_{Zh} = (\sigma_{Zh} - \sigma_{Zh}^{SM})/\sigma_{Zh}^{SM}$

Results: Inert Doublet

CEPC Higgs Self Coupling Measurement at Ecm=240 GeV

M. McCullough, arXiv:1312.3322

 $\delta_{\sigma}^{240} = 100 \left(2\delta_Z + 0.014\delta_h \right) \%$

 g_{hZZ} fixed to SM value ($\delta_z = 0$) g_{hhZZ} fixed to SM value

$$\Rightarrow \delta_H = \frac{\delta_{\sigma}^{240}}{0.014} = \frac{0.0051}{0.014} = 36\%$$

Note : Oft quoted 30% error comes from combining CEPC with 50% HL-LHC meas.

M. McCullough, arXiv:1312.3322

FIG. 3: Indirect 1σ constraints possible in $\delta_Z - \delta_h$ parameter space by combining associated production cross section measurements of 0.4% (1%-estimated) precision at $\sqrt{s} = 240$ GeV, (350 GeV) in solid black. It should be kept in mind that for large values of $|\delta_h|$ this ellipse can only be considered qualitatively as the calculation is only valid to lowest order in δ_h . The different axes scales should also be noted. Direct constraints possible at the high luminosity LHC and 1 TeV ILC (with LU denoting luminosity upgrade) are also shown for comparison. Lines are drawn to emphasize that direct constraints do not suffer from uncertainty in the hZZcoupling.