# Top electroweak couplings at 500 GeV ILC

#### **ILD Analysis/Software Meeting**

#### Yo Sato Tohoku University

#### Motivation

The top quark mass is comparable with the electroweak symmetry breaking scale.

Top quark may be related to new physics behind EWSB, such as composite models,

so top quark electroweak coupling is a good probe of new physics.



Plot showing the predicted deviations of Z<sup>0</sup>couplings to t<sub>L</sub> and t<sub>R</sub> in composite models arXiv:1403.2893 [hep-ph] **Precision expected at the ILC will allow to distinguish between models**.

#### Topic

- 1. Semi-leptonic analysis : Reason of the migration effect
- 2. Fully-leptonic analysis : Cut study as first trial of this analysis
  - ILD Analysis/Software Meeting

#### Top quark reconstruction for Semi-leptonic analysis

- Isolated lepton finding : #iso\_lep =1
- Suppressing the overlay background using k<sub>T</sub> algorithm
- Jet clustering using Durham algorithm (LCFIPlus package)
- > 2 b-likeness jets were found (LCFIPlus package)
- Reconstruction of top quark decaying hadronic
- > Minimizing the  $\chi^2$  to select the better combination of b and W;

$$\chi^{2} = \left(\frac{\gamma_{t} - 1.403}{\sigma_{\gamma_{t}}}\right)^{2} + \left(\frac{p_{b}^{*} - 67.4}{\sigma_{p_{b^{*}}}}\right)^{2} + \left(\frac{\cos\theta_{bW} - 0.23}{\sigma_{\cos\theta_{bW}}}\right)^{2}$$

 $\gamma_t$  : the Lorentz factor of top quark ( $\gamma_t = E_t/m_t$ )

 $p_b^*$ : the momentum of b quark in the rest frame of top quark

 $\theta_{bW}$ : the angle between the b quark and the W boson in the ILC frame • ILD Analysis/Software Meeting

#### Angular distribution of top decaying hadronic



Right-handed electron case (eRpL), Blue line Precise reconstruction of  $\theta_{top}$ Left-handed electron case (eLpR), Red line Considerable migrations of events passing from the forward hemisphere to the backward one.

 $\rightarrow$  It's called **the migration effect**.

#### In this analysis, the control of the migration effect is main problem

# **Correlation between** $\cos \theta_t$ and $\cos \theta_{tb}^*$



 The angular distribution for each combination of the initial and the top's polarization stems is determined by angular momentum conservation.

(e.g.)  $|M(e_L \bar{e}_R \rightarrow t_L \bar{t}_R)^{\gamma, Z}|^2 \propto (1 + \cos \theta_t)^2$ 

- When b quark is emitted to top's fright direction (opposite direction), b becomes hard (soft) and W becomes soft (hard).
- In the case of hard b and soft W, wrong association of b and W can flip the polar angle by π giving rise to migrations.

#### **Correlation between** $\cos \theta_t$ and $\cos \theta_{tb}^*$ **eLpR eRpL**



- For left(right)-handed top case, b tends to be emitted to top's fright direction (opposite direction) because of the V-A structure.
- Distribution of events tending to flip ( $\cos \theta_{tb}^* > 0$ ) is **asymmetry** for eLpR case, on the other hand, it is almost symmetry for eRpL case.
  - ILD Analysis/Software Meeting

### The angular distribution of true and wrong association



*Right-handed electron case (eRpL), Blue line* Little difference between true and wrong associated distributions *Left-handed electron case (eLpR), Red line* Almost opposite between true and wrong

The wrong has the opposite distribution to the true in the case of eLpR

### $\rightarrow$ The migrations happen in only the case of eLpR

#### Current process for Fully-leptonic analysis

- Isolated lepton finding : #iso\_lep =2
- Suppressing the overlay background using k<sub>T</sub> algorithm
- > Jet clustering using Durham algorithm (LCFIPlus package)
- > 2 b-likeness jets were found (LCFIPlus package)
- (Reconstruction events from their kinematics.  $\rightarrow$  Not yet)

### →My first trial of fully-leptonic analysis is cut study

## Selection for fully-leptonic channel

#### Setting

Signal,Background : DBD samples, 500 GeV, 500 fb<sup>-1</sup>,  $P(e^{-}, e^{+}) = (-0.8, +0.3)$ 

I analyzed all considerable backgrounds referring the semi-leptonic analysis.

| 500 fb <sup>-1</sup><br>(-0.8,+0.3) | ttbar<br>Fully-leptonic<br>(Signal) | ttbar<br>Semi-leptonic | ttbar<br>Fully-hadronic | IIWW            | uu,dd,ss,<br>cc,bb |
|-------------------------------------|-------------------------------------|------------------------|-------------------------|-----------------|--------------------|
| Generated                           | 53289                               | 208505                 | 197432                  | 20502           | 9497621            |
|                                     | (100%)                              | (100%)                 | (100%)                  | (100%)          | (100%)             |
| # of lepton =                       | 25482                               | 2716                   | 43                      | 7598            | 6959               |
| 2                                   | (47.8%)                             | (1.30%)                | (0.022%)                | (37.1%)         | (0.0733%)          |
| b-tag1 > 0.8<br>or<br>b-tag2 > 0.8  | 22278<br>(41.8%)                    | 2029<br>(0.973%)       | 28<br>(0.014%)          | 132<br>(0.644%) | 1267<br>(0.0133%)  |
| Thrust < 0.9                        | 21612                               | 2022                   | 28                      | 114             | 77                 |
|                                     | (40.6%)                             | (0.970%)               | (0.014%)                | (0.556%)        | (0.00081%)         |

#### Selection for fully-leptonic channel

| 500 fb <sup>-1</sup><br>(-0.8,+0.3) | xxWW          | ZZ<br>semi-leptonic | WW<br>semi-leptonic | Single W<br>semi-leptonic | Single Z ee      |
|-------------------------------------|---------------|---------------------|---------------------|---------------------------|------------------|
| Generated                           | 11405         | 183053              | 2785822             | 2426503                   | 941270           |
|                                     | (100%)        | (100%)              | (100%)              | (100%)                    | (100%)           |
| # of lepton =                       | 793           | 28343               | 14528               | 18143                     | 97536            |
| 2                                   | (6.95%)       | (15.5%)             | (0.522%)            | (0.748%)                  | (10.362%)        |
| b-tag1 > 0.8<br>or<br>b-tag2 > 0.8  | 13<br>(0.11%) | 5110<br>(2.79%)     | 139<br>(0.0050%)    | 244<br>(0.010%)           | 13942<br>(1.48%) |
| Thrust < 0.9                        | 11            | 1524                | 38                  | 65                        | 5727             |
|                                     | (0.093%)      | (0.833%)            | (0.0014%)           | (0.003%)                  | (0.608%)         |

#### Main background : ttbar semi-leptonic, ZZ semi-leptonic and Single Z ee

- $\rightarrow$  I tried another criteria for cutting these backgrounds
  - ILD Analysis/Software Meeting

# **Cut on the visible energy**

The missing energy of the signal is smaller because of two missing neutrinos



#### **Current results of cut study of fully-leptonic analysis**

| 500 fb <sup>-1</sup><br>(-0.8,+0.3) | ttbar<br>Fully-leptonic<br>(Signal) | ttbar<br>Semi-leptonic | ZZ<br>semi-leptonic | Single Z ee |
|-------------------------------------|-------------------------------------|------------------------|---------------------|-------------|
| Generated                           | 53289                               | 208505                 | 183053              | 941270      |
|                                     | (100%)                              | (100%)                 | (100%)              | (100%)      |
| # of lepton = 2                     | 25482                               | 2716                   | 28343               | 97536       |
|                                     | (47.8%)                             | (1.30%)                | (15.5%)             | (10.362%)   |
| b-tag1 > 0.8 or                     | 22278                               | 2029                   | 5110                | 13942       |
| b-tag2 > 0.8                        | (41.8%)                             | (0.973%)               | (2.79%)             | (1.48%)     |
| Thrust < 0.9                        | 21612                               | 2022                   | 1524                | 5727        |
|                                     | (40.6%)                             | (0.970%)               | (0.833%)            | (0.608%)    |
| evis< 420                           | 20958                               | 1252                   | 502                 | 1114        |
|                                     | (39.3%)                             | (0.600%)               | (0.274)             | (0.118%)    |

#### Efficiency = 39.3%, Significance $(N_{sig.}/\sqrt{N_{sig.} + N_{bkg.}}) = 135.8$

(My signal samples include taus. Efficiency may improve from the application of a tau finder.)

ILD Analysis/Software Meeting

# Summary and plan

- Migration study (Semi-leptonic analysis)
  - The reason of migration effect is that distribution of events tending to flip is asymmetry for the eLpR case and it can be explained by the relation of polarization.
- Cut study (Fully-leptonic analysis)
  - I tried cut study as my first trial of fully-leptonic analysis.

 Stay in France in August and September to study the matrix element method (← fully-leptonic analysis)



# **The ratio of true to wrong combination**

This is the ratio of true to wrong combination on the reconstructed evens in the case of eLpR or eRpL.

| (250fb-1) | True          | Wrong         |  |
|-----------|---------------|---------------|--|
| eLpR      | 75586 (84.3%) | 14109 (15.7%) |  |
| eRpL      | 30286 (84.1%) | 5712 (15.9%)  |  |

The ratio is same in both cases!

 $\rightarrow$  \* The wrong combination distribution is different?

\* When is the  $\chi^2$  of wrong smaller than it of true? (Now I'm studying)

### Cut on the visible energy

I calculate the efficiency and significance  $(N_{sig.}/\sqrt{N_{sig.} + N_{bkg.}})$ changing the cut region on the visible energy

|           | 2ј    | <b>4</b> j | 4f_ZZ  | singleZee | efficiency | significance |
|-----------|-------|------------|--------|-----------|------------|--------------|
| init      | 53263 | 208505     | 183053 | 941270    | 100.0%     | 45.2         |
| #lep=2    | 25473 | 2716       | 28325  | 97545     | 47.8%      | 64.9         |
| btag      | 22270 | 2029       | 5060   | 13948     | 41.8%      | 107.0        |
| thrust    | 21605 | 2022       | 1503   | 5728      | 40.6%      | 123.0        |
| evis< 425 | 21106 | 1300       | 559    | 1212      | 39.6%      | 135.7        |
| evis< 420 | 20958 | 1252       | 502    | 1114      | 39.3%      | 135.8        |
| evis< 415 | 20795 | 1198       | 488    | 1013      | 39.0%      | 135.7        |
| evis< 410 | 20592 | 1144       | 468    | 941       | 38.7%      | 135.4        |

When Evis < 420, the significance is the maximum

### $\rightarrow$ I select this value.