



### CMS HL-LHC Endcap Calorimeter: A Child of CALICE

September 15, 2016 Jeremiah Mans University of Minnesota

# $LHC \rightarrow HL-LHC$ and the Higgs







Sept. 15, 2016

- Discovery of the Higgs was the exciting and defining event of LHC Run I
- Run I was pretty easy on the detectors
  - Peak luminosity of 0.7 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>, compared with design of 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - Lower pileup cross-section and multiplicity due to lower center of mass energy
  - Bunches spaced by 50ns compared with 25ns

# $\checkmark$ LHC $\rightarrow$ HL-LHC and the Higgs



### HL-LHC Physics goals in the Higgs sector

- Unraveling the true nature of EWSB
- Precision measurement of the Higgs Sector
- Observation of HH production, constraints on self-coupling
- Rare ( $\mu\mu$ , Z $\gamma$ ...) or forbidden H<sub>125</sub> decays ( $\mu\tau$ ...)



Sept. 15, 2016



# LHC Luminosity Evolution





Sept. 15, 2016

# Challenge: Radiation Tolerance



#### 3000 fb-1 Absolute Dose map in [Gy] simulated with MARS and FLUKA





## Challenge: Pileup





Figure 9.1: An event display showing reconstructed tracks and vertices of a simulated top-pair event with additional 140 interactions overlaid for the Phase-II detector.

- HL-LHC Nominal Parameters
  - 140 additional interactions per bunch crossing (every 25 ns) + out-of-time PU
    - Could go up to 200
  - Luminosity levelled detector must operate for hours at peak conditions
- Challenges for Triggers (especially Level 1 !) & offline reco + computing

Need to preserve "low" energy physics (125 GeV Higgs) and explore TeV scale (e.g. SUSY) in a very harsh environment !



## Child of CALICE in the Endcap





Sept. 15, 2016





- Continuous-mode operation required for CMS
  - Many-hour fills in a circular collider with 25 ns bunch spacing, compared with more-widely spaced bunches and lower frequency pulses of ILC
  - Implication: power and cooling are much more important for CMS than for CALICE
    - CMS: 125 kW cooling requirement

- Collision environment
  - Silicon technology motivated in CMS initially by radiation tolerance, secondarily by performance potential
  - Managing pileup is a critical physics task to pick out true low p<sub>T</sub>
     jets (weak-scale) from fakes produced by pileup fluctuations





### **EE/FH** Design Details

Sept. 15, 2016

### Silicon Detector Parameters





EE: Si+W/Cu
28 layers, ~26 X<sub>0</sub> (1.5 λ)
10 x 0.65 X<sub>0</sub> +

● 8 x 1.26 X<sub>0</sub>

Operation at -30°C via CO<sub>2</sub> Cooling (to mitigate Si leakage current)

Table 3.2: Parameters of the EE and FH.

|                                   | EE    | FH   | Total |
|-----------------------------------|-------|------|-------|
| Area of silicon (m <sup>2</sup> ) | 380   | 209  | 589   |
| Channels                          | 4.3M  | 1.8M | 6.1M  |
| Detector modules                  | 13.9k | 7.6k | 21.5k |
| Weight (one endcap) (tonnes)      | 16.2  | 36.5 | 52.7  |
| Number of Si planes               | 28    | 12   | 40    |

Sept. 15, 2016



## Building up the EE





Sept. 15, 2016



### Modules



#### Modules

with 2x6 or 8" Hexagonal Si sensors, PCB, FE chip, on W/Cu baseplate





| To cope with the irradiation | / PU: |  |
|------------------------------|-------|--|

- η-dependent depletion of Si
- η-dependent cell size

| Thickness                       |             | $300\mu m$            | $200\mu{ m m}$             | $100\mu{ m m}$       |
|---------------------------------|-------------|-----------------------|----------------------------|----------------------|
| Maximum dose (Mr                | ad)         | 3                     | 20                         | 100                  |
| Maximum n fluence               | $(cm^{-2})$ | $6 \times 10^{14}$    | $2.5 \times 10^{15}$       | $1 \times 10^{16}$   |
| EE region                       |             | $R > 120  \rm{cm}$    | $120 > R > 75 \mathrm{cm}$ | $R < 75 \mathrm{cm}$ |
| FH region                       |             | $R > 100 \mathrm{cm}$ | $100 > R > 60 \mathrm{cm}$ | $R < 60 \mathrm{cm}$ |
| Si wafer area (m²)              |             | 290                   | 203                        | 96                   |
| Cell size (cm <sup>2</sup> )    |             | 1.05                  | 1.05                       | 0.53                 |
| Cell capacitance (pF            | )           | 40                    | 60                         | 60                   |
| Initial S/N for MIP             |             | 13.7                  | 7.0                        | 3.5                  |
| S/N after 3000 fb <sup>-1</sup> |             | 6.5                   | 2.7                        | 1.7                  |

Sept. 15, 2016



### **Prototype Sensors**







- Prototype 6" sensors obtained from Hamamatsu for all three active thicknesses
- Testbeam modules initially instrumented with 200um active thickness
- Excellent results observed in sensor tests at FNAL





### Assembling a Module





Sept. 15, 2016



## Wire bonding the module



### Finished module with SKIROC for

testbeam

# ~ 700 wire bonds on a single module!

SKIROC

**FE CHIP** 

CMS initial testbeam based on SKIROC chip developed for CALICE tests



Sept. 15, 2016



### Testbeam stack at FNAL





The 16 detector modules are at depths of: 0.6, 1.4, 2.0, 2.8, 3.4, 4.3, 5.1, 6.1, 6.9, 7.9, 8.7, 10.1, 11.3, 12.7, 13.9 and 15.3 X<sub>o</sub> respectively.

The mechanics consists of a hanging file structure for flexibility:

- Enables easy insertion of detector modules as well as absorbers of different thicknesses.
- It is easy to have different distances between the layers.

Sept. 15, 2016



### **Results from Testbeam**











### Electronics



#### Need to have large dynamic range @ low power + low noise



### Baseline architecture: Charge + Time-over-Threshold (ToT) [\*]

- Switch from charged readout to ToT at ~100 fC
- ADC (10 bits) and TDC (12 bits) with existing designs
- Potential for 50 ps timing per cell

[\*] alternative: more classical readout (bi-gain) or switched feedback



### Cassettes



5

#### Mechanical Prototype: Cassette



"dummy" cassette for thermal tests



Sept. 15, 2016



## CO<sub>2</sub> Cooling



Cassettes FEA

Goal:  $\Delta T \sim 1.2 \text{ K}$ 6mm Cu plate 1 pipe – uniform heat load  $\Delta T \sim 0.9 \text{K}$  (over the cassette) Cooling Tube: OD-4.8mm, ID-3.2mm, Length - 5.9 m, mass flow: 2.0 gm/sec,  $T_{max}$  -28.00C,  $T_{min}$  -28-86C.

Thermal Mock-up with tests  $(CO_2 \text{ Cooling stations at FNAL, IPNL})$ 





HCC Jun15





### **Backing Calorimeter**

Sept. 15, 2016







BH: Scintillator + Steel
12 layers, >5 λ
~450 m<sup>2</sup> of scintillator

- Technical Proposal Concept
  - WLS fiber readout with SiPM phototransducers ~identical to Phase 1 upgrade
  - Specialized materials potentially needed in highest radiation zones
- Current R&D
  - Enclose full detector in thermal screen
  - Allows use of silicon modules in highradiation zones and allows possible adoption of SiPM-on-tile technology



### **Radiation Dose**







### Tradeoffs





Sept. 15, 2016





- If the whole endcap runs at -30C, the boundary between silicon and scintillator can be flexible
  - "Mixed" cassettes with silicon and scintillator sections or megatiles with silicon sections!
- Since SiPMs are inside the cold volume, can consider use of SiPMon-tile technology as in CALICE A-HCAL
  - Very appealing for muon-id performance and system uniformity if read out by variant of silicon readout chip
- Depends on understanding plastic scintillator radiation tolerance at low temperature under study now







### **Calibration and Performance**

Sept. 15, 2016



## Calibration by MIPs



### "MIP" Tracking ("punch through")

- Require signal in layer before/after + isolation
- Can be done on any readout (L1, offline)
- Tested in MC minimum-biased sample with <N<sub>PU</sub>>=140
- Need 1.5M events to reach 3% precision (takes ~ 1 day)





- ➢ In addition, for redundancy:
- Low-capacitance/low-noise cell included in each wafer for calibration



# **Electromagnetic Performance**



#### EM shower energy containment



Sept. 15, 2016

CMS HL-LHC EC :: CALICE Collaboration Meeting

 $2 \times 10^{2}$ 



Sept. 15, 2016

### EM Id Performance





shower start z [cm]

### Jet Reconstruction





## **Timing Potential**





 TDC capability of the proposed electronics brings the possibility of using timing information to improve pileup rejection and help drive appropriate reconstruction



## **Project Timeline**



### Now in R&D phase

- Fast progress since Technical Proposal (mechanics, sensors & modules, FE, ...)
- Several test beams session this year (FNAL, CERN)
- TDR expected end of 2017, including key technical choices
- Construction starts in ~2019



Sept. 15, 2016



## Summary



- CMS has decided to respond to the severe challenges of the HL-LHC by adopting technologies pioneered by the CALICE group to create a new endcap calorimeter
  - Silicon/tungsten electromagnetic calorimeter, silicon-based front hadronic calorimeter
  - Potentially an SiPM-on-tile backing calorimeter
- The CMS HL-LHC EC project has exciting physics potential and poses many interesting technical challenges
  - The time scale is aggressive and the project hopes for continued collaboration with CALICE groups





### **Additional Material**

Sept. 15, 2016



Sept. 15, 2016



### 1MeV neutron equivalent in Silicon, HGC, 3000fb<sup>-1</sup>





Sept. 15, 2016

### SKIROC2-CMS





- SKIROC2\_CMS (not the final chip):
- Includes some of the HGC features:
  - ~20ns shaping time and 40MHz sampling
  - ADC + TOA (~50ps) + TOT
  - P-on-N and N-on-P read-out options
- Production launched in January, Available in ~June
  - Plan to use it for CERN test beams (Fall)
    - after tests on board (noise, stability, linearity, crosstalk, ...)
- Also: test vehicles on blocks launched (TSMC 130nm)
- First iteration of full chip expected by Spring 2017.
  - with feedback from test vehicles & SKIROC2\_CMS