Time and Energy analysis of 2015-16 data

- > AHCAL Setup in July 2015 at SPS
- Energy analysis
 - high gain / low gain inter-calibration
 - saturation correction
- > Time analysis

Ambra Provenza (DESY), Eldwan Brianne (DESY), Sascha Krause (Uni Mainz), <u>Katja Krüger</u> (DESY)

CALICE Meeting, UT Arlington 15 September 2016

AHCAL testbeam at SPS in July 2015

- > Testbeam times:
 - 2 weeks in July 2015 in EUDET steel absorber
 - 2 weeks in August 2015 in tungsten absorber
- > Data sets:
 - Muons (180 GeV),
 - Pions (10 90 GeV)
 - Electrons (10 50 GeV)

> Setup:

- 14 Layers (3744 channels): 10 layers shower start finder + 4 large layers
- Trigger signal (T₀) directly fed to the chip as a normal channel \rightarrow reference time

Energy analysis

strategy:

> muons:

- do/check MIP calibration
- dead channel list
- > electromagnetic showers
 - high gain / low gain inter-calibration
 - saturation correction
 - study response and resolution
- hadron showers
 - study shower shapes
- > for all: compare with simulation

High gain / low gain inter-calibration

- beam data: SPIROC switches automatically from high to low gain (autogain), so only one information available
- > LED calibration runs:
 - usually also taken in auto-gain mode
 - in 2015: some short LED runs taken in dual gain mode
 - difficulty: only very few LED voltages at very low amplitude, optimised for gain calibration (single pixel spectra)
 - non-optimal for inter-calibration, can only determine 1 inter-calibration constant per chip
- > check method channel-by-channel with dedicated inter-calibration runs in July 2016
 - LED voltages 3500 mV \rightarrow 8000 mV in steps of 50 mV
 - external trigger mode
 - additional pedestal run
 - auto-trigger mode
 - pedestal from MIP scan in DESY beam

two step procedure:

- > first estimate:
 - for each LED voltage: study mean of high gain vs. mean of low gain ADC distribution (pedestal subtracted per memory cell)
 - fit in linear range: slope is IC factor
- refinement:
 - correct low gain measurement with IC factor, check difference to high gain for each measurement

chip 117 chn 8 each point corresponds to one LED voltage

two step procedure:

- > first estimate:
 - for each LED voltage: study mean of high gain vs. mean of low gain ADC distribution (pedestal subtracted per memory cell)
 - fit in linear range: slope is IC factor
- refinement:
 - correct low gain measurement with IC factor, check difference to high gain for each measurement

chip 211 chn 0 each point corresponds to one LED voltage strange behaviour in auto-trigger (probably due to

pedestal shift)

useable!

 \rightarrow auto-trigger not

High gain / low gain inter-calibration: result of first step

> first estimate: distribution of IC factors (per channel) from LED scan in July 2016 in external trigger mode

High gain / low gain inter-calibration

two step procedure:

- > first estimate:
 - for each LED voltage: study mean of high gain vs. mean of low gain ADC distribution (pedestal subtracted per memory cell)
 - fit in linear range: slope is IC factor

refinement:

 correct low gain measurement with IC factor, check difference to high gain for each measurement

High gain / low gain inter-calibration

- > channel-wise IC calibration needed?
- if chip-wise is good enough, RMS of the channels on a chip should be significantly smaller than RMS of all channels

> RMS are comparable, so in future will use channel-wise inter-calibration

Comparison of data & MC for muons, electrons and pions.

- Applying and testing different event selections:
 - T0, Cherenkov, track finder, #hits per event/layer/..
- Testing and controlling calibration parameters:
 - Gain & LY
- Focus on discrepancies between MC & data allowed to find and correct for bugs & missing calibration:
 - 1. Wrong pedestal subtraction in reconstruction software for LG entries.
 - 2. Missing HG/LG intercalibration.
 - 3. Missing calibration of SiPM saturation effects.

3. Missing calibration of SiPM saturation effects:

Number of effective pixels (*NeffPx*) has a large impact on saturation correction in high energy region.

Reason for new saturation calibration:

 SiPM saturation function does not only depend on <u>real</u> number of pixels, it also depends on the recovery of pixels in a few ns after fired, which can be taken into account by a number of <u>effective</u> pixels.

First step:

 Try to match raw TB data (intrinsic SiPM saturation) with MC data including saturation in digitization by adapting NeffPx.

Second step:

• Compare effect on new saturation corrected data to MC data.

3. Missing calibration of SiPM saturation effects:

Number of effective pixels (*NeffPx*) has a large impact on saturation correction in high energy region.

3. Missing calibration of SiPM saturation effects:

Number of effective pixels (*NeffPx*) has a large impact on saturation correction in high energy region.

13

Time analysis: Calibration

strategy

- use only t0 signals as reference, no additional measurements
- use muons for calibration
- use electrons to cross-check calibration
- study pions
- > measurement principle:
 - SPIROC2b ramp: 3920 ns ramp length (testbeam mode)
 - TDC: ~1.6 ns/bin
- > slope calibration (edge extraction):
 - Pedestal and Maximum of the ramp extracted using edges of the TDC Spectrum

 $slope_{Chip,BXID} = \frac{3920 \ ns}{(V_{max}[TDC] - V_{min}[TDC])}$

- many calibration constants needed
 - 2 ramps per chip
 - offsets per channel and per memory cell

Time resolution: muons before corrections

- > correct for memory-cell wise pedestal
- > time delay between reference hit time and the real event
 → offset corrected chip by chip
- > no other corrections
- > clearly asymmetric
- resolution around 8-11 ns
 - RMS of whole distribution significantly wider than Gaussian sigma
 - big layers slightly worse
 - need to check layers 9 & 11
- > known effects deteriorating the resolution:
 - non-linearity of the TDC ramp
 - time-walk effect

Linearity Correction

- > calibration assumes linear ramp
- > non-linearity can be checked by plotting the mean of the hit time distribution versus the TDC value of the hit
 - \rightarrow would be flat for linear ramp
- clearly not flat
- > fit with polynomial function and correct
- > one correction function per TDC ramp (2 per chip)
- > small improvement in timing resolution: ~7% corresponds to ~3.6 ns effect

Time-Walk Correction

- time-walk effect:
 - low hit amplitudes induce a time slew due to the threshold
 - assumed to be the same for all chips
 - \rightarrow one parametrisation needed
- > check mean hit time as function of hit energy
- > fit with

 $f(t) = A * e^{-\lambda t}$

 > up to 5 ns correction for small hits
~2.4% improvement in resolution (~ 2 ns effect)

Time analysis: resolution for muons

- > hit time distribution for a single channel after corrections (nonlinearity, timewalk)
- > resolution obtained ~8 ns
 - still asymmetric tail to the right
 - biased cut?
 - propagation time in scintillator?
 - comparison with Mokka and DD4hep simulation
 - Gaussian smearing of hit times
 - no noise added
 - good agreement in [-10, 10] ns range
 - same Gaussian resolution used in Mokka and DD4hep, needs more checks in DD4hep

- ILC mode has ~200ns TDC ramps instead of ~4ms
- if resolution is dominated by TDC: expect factor ~20 better resolution, corresponding to ~0.4 ns

Time analysis: check with electrons

- > apply the calibration constants determined from muons to electron data
- > allow only for an offset in the time reference because of a different trigger setup
- > width similar to muons, but tail to the right even larger
- > pedestal shift for events with many triggered channels on the same chip? → check

Time analysis: check with electrons

- > check mean hit time as function of number of triggered channels on the chip
- > clear effect observed
- > correct with a linear function
 - at the moment the same for all chips, need to check
- > distribution more symmetric, but still larger tail to the right
- > improves resolution for electrons by ~2% (1.6 ns effect)
- > effect for muons negligible

> next steps:

- understand origin of asymmetry
- check influence of noise
- estimate resolution of time reference from t0 channels
- look into pion data

Summary

- > distributed analysis of 2015 data progressing
- > energy measurement
 - MIP calibration done
 - dead channel map done
 - high gain / low gain inter-calibration
 - can probably only do chip-wise values for 2015 data
 - in future need channel-wise calibration procedure
 - saturation correction: started
 - next steps: response, shower shapes
- time measurement
 - calibration procedure developed for muons
 - cross check with electrons look reasonable
 - next steps
 - understand asymmetry
 - look into hadrons

Backup

Intercalibration constant applied to LED

Intercalibration constant used to correct ADC_LG:

 $ADC_{LG}^{corr} = \mathbf{\Gamma} * ADC_{LG} + p0$ pedestal_{LG}^{corr} = \mathbf{\Gamma} * pedestal_{LG} + p0

 $ADC_{LG}^{corr} = \mathbf{\Gamma} * (ADC_{LG} - pedestal_{LG})$

p0 doesn't play any role

- IC obtained using mean ADC value per channel. ADC_{HG} - ADC_{LG}^{corr} vs ADC_{LG}^{Nocorr} plotted to verify if the IC is well done and estimate the corrections **C** to apply to the IC, due to the fact that the mean ADC value has been used
- How to apply the correction

 $ADC_{LG}^{final} = (\mathbf{L} + \mathbf{C}) * ADC_{LG} + p0$

Again p0 has no role because same correction applied also to the pedestal

T0 Calibration Check (Time reference)

- T₀ are the reference time to the trigger. 6 available in the AHCAL, only 4 working (Layers 11 to 14)
- Control of the time reference
 - Cross-Check : T_{0s} against one another and T_{0s} against sum of the others
 - Good calibration → line at 45 degrees
- Deviation ~ < 5 ns</p>
- Averaging of the T0s :
 - Reducing the uncertainty on the reference time.

Residuals for each T₀ (Blue - BXID even / Red - BXID odd)

Time analysis: resolution for muons

- > hit time distribution for a single channel after corrections (nonlinearity, timewalk)
- > resolution obtained ~7.5 ns
 - still asymmetric tail to the right
 - biased cut?
 - propagation time in scintillator?
 - comparison with Mokka and DD4hep simulation
 - gaussian smearing of hit times
 - no noise added
 - good agreement in [-10, 10] ns range
 - same gaussian resolution used in Mokka and DD4hep, needs more checks in DD4hep

with N_triggered correction

