

# Update on ECAL photon optimisation

Matthias Weber

CERN



#### Values calculated from geometry xml file

|                                       | # Layers   | Absorber<br>Thickness<br>[mm] | Si [mm] | Other (gaps,<br>etc) [mm] | Absorber<br>Thickness [X0] | Si+Other<br>Thickness<br>[mm] | Si+Other<br>Thickness [X0] | Total<br>Thickness<br>[mm] | Total<br>Thickness<br>[X0] | Calorimeter<br>Thickness<br>[mm] | Calorimeter<br>Depth [X0] |
|---------------------------------------|------------|-------------------------------|---------|---------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|---------------------------|
| CLIC_o2_v04                           | 17         | 2.4                           | 0.5     | 1.5                       | 0.65                       | 2                             | 0.06                       | 74.8                       | 12.01                      | 120.2                            |                           |
| (current)                             | current) 8 | 4.8                           | 0.5     | 1.5                       | 1.30                       | 2                             | 0.06                       | 54.4                       | 10.84                      | 129.2                            | 22.03                     |
| CLICdet_20_10                         | 20         | 2                             | 0.5     | 1.5                       | 0.54                       | 2                             | 0.06                       | 80                         | 11.96                      | 140                              | <u> </u>                  |
| (original CLIC_ILD)                   | 10         | 4                             | 0.5     | 1.5                       | 1.08                       | 2                             | 0.06                       | 60                         | 11.39                      | 140                              | 23.33                     |
| CLICdet_30_10                         | 30         | 1.5                           | 0.5     | 1.5                       | 0.41                       | 2                             | 0.06                       | 105                        | 13.89                      | 455                              | 22.58                     |
| (possible high<br>granularity option) | 10         | 3                             | 0.5     | 1.5                       | 0.81                       | 2                             | 0.06                       | 50                         | 8.68                       | 155                              |                           |
| CUCdat 20                             | 30         | 2.65                          | 0.5     | 1.5                       | 0.72                       | 2                             | 0.06                       | 140                        | 23.22                      | 120 5                            | <u> </u>                  |
| clicuet_50                            | 0          | 0                             | 0       | 0                         | 0.00                       | 0                             | 0.00                       | 0                          | 0.00                       | 139.3                            | 25.22                     |
| CLICdet_40                            | 40         | 1.9                           | 0.5     | 1.5                       | 0.51                       | 2                             | 0.06                       | 156                        | 22.85                      | 450                              | 22.05                     |
| (possible high granularity option)    | 0          | 0                             | 0       | 0                         | 0.00                       | 0                             | 0.00                       | 0                          | 0.00                       | 156                              | 22.85                     |
| CLICdet_40                            | 40         | 1.95                          | 0.5     | 1.5                       | 0.53                       | 2                             | 0.06                       | 158                        | 23.39                      | 158                              | 23.39                     |
| x195                                  | 0          | 0                             | 0       | 0                         | 0.00                       | 0                             | 0.00                       | 0                          | 0.000                      | 130                              |                           |

CALICE Collaboration Meeting,

September 16, 2016

Matthias Weber CERN

#### Energy deposited per unit length CLIC\_02\_v04 (CLIC\_18\_7)



**CERN** 

Raw energy deposited in sensitive volume as reported by Geant4, divided by sensitive volume thickness. Normalization to 1 for high energies affected by loss of energy in



#### Energy deposited per unit length CLIC\_40



**CERN** 

Raw energy deposited in sensitive volume as reported by Geant4, divided by sensitive volume thickness. Normalization to 1 for high energies affected by loss of energy in ECAL-HCAL gap.





#### Single photons in the very central part of the detector ( $\theta \approx 90^\circ$ ) and $\phi \approx 0^\circ$



- Fits agree more or less, but constant term <1%, fit agrees with the trend of the points.
- Thicker back layers deteriorate resolution of high energy  $\gamma$ 's
- Uniform det30 option better than CDR at high energy, comparable at low energies
- The uniformly thin option (det40) is best behaving at high 800 1000 1200 1400 1600 energy since it has the thinnest  $E_{\gamma}^{true}$  [GeV] layers at the back (1.9 mm and **1.95 mm comparable**)

#### New Model CLIC\_03\_v5



Uniform segmentation of ECAL

• 40 layers, absorber 1.9 mm, active material 0.50 mm

#### Model CLIC\_o2\_v05: other 1.5 mm: total thickness 15.6 cm

```
c<dimensions numsides="ECalBarrel symmetry" rmin="ECalBarrel inner radius" z="ECalBarrel half length*2" />
 <staves vis="ECalStaveVis" />
 <laver repeat="40" vis="ECalLaverVis">
     <slice material = "TungstenDens24" thickness = "1.90*mm" vis="ECalAbsorberVis" radiator="yes"/>
     <slice material = "Air"
                                        thickness = "0.25*mm" vis="InvisibleNoDaughters"/><!-- fiber -->
     <slice material = "GroundOrHVMix"
                                        thickness = "0.10*mm" vis="ECalAbsorberVis"/>
     <slice material = "Silicon"
                                        thickness = "0.50*mm" sensitive="yes" limits="cal limits" vis="ECalSensitiveVis"/>
                                        thickness = "0.10*mm" vis="InvisibleNoDaughters"/><!-- glue -->
     <slice material = "Air"
     <slice material = "siPCBMix"</pre>
                                        thickness = "0.80*mm" vis="ECalAbsorberVis"/>
                                        thickness = "0.25*mm" vis="InvisibleNoDaughters"/>
     <slice material = "Air"
 </layer>
```

#### Model CLIC\_o3\_v05: other 2.65 mm: total thickness 20.2 cm

```
<dimensions numsides="ECalBarrel symmetry" rmin="ECalBarrel inner radius" z="ECalBarrel half length*2" />
<staves vis="ECalStaveVis" />
<layer repeat="40" vis="ECalLayerVis">
    <slice material = "TungstenDens24" thickness = "1.90*mm" vis="ECalAbsorberVis" radiator="yes"/>
    <slice material = "G10"
                                       thickness = "0.15*mm" vis="InvisibleNoDaughters"/>
    <slice material = "GroundOrHVMix"
                                       thickness = "0.10*mm" vis="ECalAbsorberVis"/>
    <slice material = "Silicon"</pre>
                                       thickness = "0.50*mm" sensitive="yes" limits="cal limits" vis="ECalSensitiveVis"/>
                                       thickness = "0.10*mm" vis="InvisibleNoDaughters"/>
    <slice material = "Air"
    <slice material = "siPCBMix"</pre>
                                       thickness = "1.30*mm" vis="ECalAbsorberVis"/>
                                       thickness = "0.25*mm" vis="InvisibleNoDaughters"/>
    <slice material = "Air"
    <slice material = "G10"
                                       thickness = "0.75*mm" vis="InvisibleNoDaughters"/>
</layer>
```



Compare old and new model: use point phi=0, theta=90 degrees

Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$ measure of  $\sigma(E_{rel})$ : RMS and gausian fit (in %)

Old model determined through iterative gaussian fits around mean within 3 sigmas

| E (GeV)                | 10       | 50       | 100            | 200        | 500       | 1000      | 1500      |
|------------------------|----------|----------|----------------|------------|-----------|-----------|-----------|
| $\sigma(E_{rel})$      | 4.72±.03 | 2.11±.02 | 1.49±.01       | 1.077±.008 | .707±.007 | .537±.005 | .438±.003 |
| RMS(E <sub>rel</sub> ) | 4.82±.03 | 2.13±.02 | 1.52±.01       | 1.170±.008 | .713±.005 | .544±.004 | .473±.003 |
| o2_v05                 | 4.58±.03 | 2.07±.02 | 1.48±.01       | 1.05±.008  | .673±.005 | .491±.004 | .403±.003 |
| 30 layers              | 5.43±.04 | 2.44±.02 | $1.75 \pm .01$ | 1.23±0.009 | .790±.006 | .572±.004 | .485±.004 |

#### **Resolution of total ECAL and HCAL Energy**





Additional material leads to a slightly higher resolution than with the original 40 layer assumption, still performs better than 30 layer options (both with constant and non constant sampling) over whole range

CALICE Collaboration Meeting, September 16, 2016 Matthias Weber CERN

## Model CLIC\_03\_v5: Calibration



Use particle gun samples for calibration, 10000 evts: 50 GeV  $K_L^0$ , 10 GeV  $\mu$ Photons at 10, 50, 100, 200 GeV, test very high E: 500, 1000, 1500 GeV

- Produced with uniform distribution in phi and theta
- Two campaigns, one restricted to barrel  $|\cos \theta| < 0.7$ , second no restriction in  $\theta$
- Simulated with DD4hep, use iLCSoft package at

/cvmfs/clicdp.cern.ch/iLCSoft/builds/2016-07-04/x86\_64-slc6-gcc48-dbg

Slight modification of ECAL Digitization extraction code





CALIBRECAL="35.776"

CALIBRECAL="35.652"

#### Calibration pretty stable at different energies

#### ECAL digitization uses photons contained in ECAL (99% of total deposited Energy)



## As expected requirement of 99 % is more stringent for higher energy samples

## Model CLIC\_03\_v5: Calibration at high Energy

Expect slight modification of EM scale in HCAL based on previous study (based on one point in phi=0):

Fit a line in 2D plot of ECAL vs HCAL Energy:



Moderate modification: ECAL: 0.99 HCAL: 0.95

## Model CLIC\_03\_v5: Calibration: whole detector

ECAL digitization uses photons contained in ECAL (99% of total deposited Energy)



Use values from samples up to 200 GeV, for Barrel and EndCap mix two peaks start to appear, due to different behavior of energy contribution from HCAL

## Model CLIC\_03\_v5: Calibration: whole detector



Default calibration constants: clear two peak, higher peak barrel, lower peak endcap Different HadToEM scale needed for HCAL energy contribution in barrel and endcap: recovers scale behavior



Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$ measure of  $\sigma(E_{rel})$ : RMS and gausian fit

| Energy (GeV)             | 1         | 5                | 10         | 15               | 30               | 50               |
|--------------------------|-----------|------------------|------------|------------------|------------------|------------------|
| $\sigma(E_{rel})$        | 15.14±.12 | $6.942 \pm .051$ | 4.873±.035 | $3.959 \pm .019$ | $2.829 \pm .020$ | $2.281 \pm .016$ |
| RMS(E <sub>rel</sub> )   | 22.94±.16 | 7.175±.051       | 4.953±.035 | 4.000±.030       | 2.914±.023       | 2.355±.017       |
| Mean (E <sub>rel</sub> ) | 0.957     | 0.996            | 0.998      | 0.999            | 0.999            | 0.997            |

| Energy (GeV)             | 100        | 200        | 500              | 1000             | 1500             |
|--------------------------|------------|------------|------------------|------------------|------------------|
| $\sigma(E_{rel})$        | 1.69±.012  | 1.27±.009  | $0.955 \pm .007$ | 0.810±.007       | $0.775 \pm .006$ |
| RMS(E <sub>rel</sub> )   | 1.773±.012 | 1.366±.010 | 1.133±.008       | $1.065 \pm .007$ | $0.953 \pm .007$ |
| Mean (E <sub>rel</sub> ) | 0.997      | 0.997      | 0.998            | 0.999            | 1.001            |





1500 GeV: not large non gaussian tails

Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$  measure of  $\sigma(E)$ : RMS and gausian fit, now moderate energy 50 GeV, non gaussian tails smaller





Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$ 

measure of  $\sigma(E)$ : RMS and gausian fit, very low energy of 1 GeV start to see inefficincies in reconstruction (not the case for to 5 GeV photons)





#### Model CLIC\_03\_v5: Barrel Overview

Summary plot of resolution in ECAL barrel



Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$ measure of  $\sigma(E_{rel})$ : RMS and gausian fit

Events well contained in endcap, exclude transition region,  $0.85 < |\cos \theta_{ph}| < 0.98$ 

| Energy (GeV)             | 1        | 5        | 10        | 15        | 30               | 50               |
|--------------------------|----------|----------|-----------|-----------|------------------|------------------|
| $\sigma(E_{rel})$        | 14.7±.29 | 6.61±.10 | 4.61±.074 | 3.75±.063 | $2.679 \pm .044$ | $2.064 \pm .043$ |
| RMS(E <sub>rel</sub> )   | 20.9±.32 | 6.89±.11 | 4.81±.072 | 3.83±.057 | 2.764±.042       | 2.16±.034        |
| Mean (E <sub>rel</sub> ) | 0.966    | 0.991    | 0.992     | 0.994     | 0.995            | 0.996            |

| Energy (GeV)             | 100       | 200       | 500        | 1000             | 1500             |
|--------------------------|-----------|-----------|------------|------------------|------------------|
| $\sigma(E_{rel})$        | 1.54±.025 | 1.10±.016 | 0.723±.011 | $0.529 \pm .008$ | $0.454 \pm .008$ |
| RMS(E <sub>rel</sub> )   | 1.58±.023 | 1.13±.017 | 0.802±.011 | 0.560±.008       | 0.539±.008       |
| Mean (E <sub>rel</sub> ) | 0.997     | 0.997     | 0.998      | 0.999            | 1.000            |



Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$ measure of  $\sigma(E)$ : RMS and gausian fit, resolution in the endcap a tad better than in Barrel, with larger errors



#### Model CLIC\_o3\_v5: Barrel leakage



| Energy (GeV)     | 1    | 5     | 10    | 15    | 30     | 50   |
|------------------|------|-------|-------|-------|--------|------|
| Leakage (mean)   | 0.21 | 0.343 | 0.535 | 0.609 | 0.8461 | 1.07 |
| Leakage (median) | 0.1  |       | 0.2   | 0.3   | 0.6    | 0.7  |
|                  | -    |       | -     | -     | -      |      |
| Energy (GeV)     | 100  | 200   | 500   | 1000  | 1500   |      |
| Leakage (mean)   | 1.38 | 1.83  | 2.36  | 3.5   | 4.24   |      |

2.6

3.3

Leakage (median) 1.0 1.3 1.9

#### E\_HCAL/(E\_ECAL+E\_HCAL) in %







Matthias Weber CERN



Study of new model CLIC\_o3\_v05: no drastic change observed in resolution of photons compared to 40 layer CLIC\_o2\_v05

ECAL Calibration constants stable across different energies

Resolution values drop to around 1 % at very high energies

- Resolution distributions
- At higher energies non gaussian tails to the lower side

At high energies non negligible contribution from HCAL, different HadToEM scale for endcap and barrel



## BACKUP

## Model CLIC\_o3\_v5: Barrel innermost leakage

| Energy (GeV)     | 1   | 10   | 50   | 100  | 200  | 500  | 1000 | 1500 |
|------------------|-----|------|------|------|------|------|------|------|
| Leakage (mean)   | 0.3 | 0.84 | 1.71 | 2.23 | 3.12 | 4.47 | 6.00 | 7.16 |
| Leakage (median) | 0.1 | 0.5  | 1.3  | 1.7  | 2.4  | 3.5  | 4.8  | 5.8  |

#### **Fit Values**





Barrel: chi2/NDF: 229/9

Alpha: 0.6751±0.005 beta: 14.99±0.04

Endcap: chi2/NDF: 11.02/9

Alpha: 0.2561±0.01 beta: 14.77±0.09

Transition region: chi2/NDF: 3.546/7

Alpha: 1.109±0.051 beta: 16.12±0.27

#### Model CLIC\_o3\_v5: Endcap leakage



| Energy (GeV)     | 1     | 5     | 10    | 15    | 30    | 50   |
|------------------|-------|-------|-------|-------|-------|------|
| Leakage (mean)   | 0.785 | 0.456 | 0.622 | 0.732 | 0.959 | 1.18 |
| Leakage (median) | 0.1   | 0.1   | 0.3   | 0.5   | 0.7   | 0.9  |

| Energy (GeV)     | 100  | 200  | 500  | 1000 | 1500 |
|------------------|------|------|------|------|------|
| Leakage (mean)   | 1.63 | 2.06 | 3.24 | 4.31 | 5.23 |
| Leakage (median) | 1.2  | 1.6  | 2.4  | 3.3  | 4.0  |

Higher leakage in Endcap compared to barrel

## Model CLIC\_03\_v5: Transition region Resolution

Determine relative resolution via distribution of  $E_{rel} = (E\_ECAL+E\_HCAL)/E\_truth$ measure of  $\sigma(E_{rel})$ : RMS and gausian fit

Events well contained in endcap, exclude transition region,  $0.79 < |\cos \theta_{ph}| < 0.83$ 

| Energy (GeV)             | 1        | 5        | 10       | 15       | 30       | 50       |
|--------------------------|----------|----------|----------|----------|----------|----------|
| $\sigma(E_{rel})$        | 15.4±.57 | 7.30±.26 | 5.32±.20 | 4.44±.18 | 3.22±.11 | 2.49±.10 |
| RMS(E <sub>rel</sub> )   | 18.1±.58 | 7.90±.26 | 5.33±.18 | 4.54±.15 | 3.24±.15 | 2.78±.10 |
| Mean (E <sub>rel</sub> ) | 0.988    | 0.988    | 0.984    | 0.989    | 0.99     | 0.996    |

| Energy (GeV)             | 100            | 200            | 500      | 1000     | 1500     |
|--------------------------|----------------|----------------|----------|----------|----------|
| $\sigma(E_{rel})$        | $1.94 \pm .07$ | $1.62 \pm .07$ | 1.31±.05 |          |          |
| RMS(E <sub>rel</sub> )   | 1.97±.06       | 1.69±.06       | 1.47±.05 | 1.50±.05 | 1.64±.06 |
| Mean (E <sub>rel</sub> ) | 0.997          | 0.989          | 0.987    | 0.999    | 1.000    |

#### Values for X<sub>0</sub> calculation



Tungsten 24: 0.37 cm Silicon: 9.36 cm G10 (density 1.7 g/cm<sup>3</sup>): 19.4 cm Air: 30420 cm GroundOrHVMix: 86 % Copper siPCBMix: 82% Copper