Update on Simulation of Time Structure - Progress for T3B and FastRPC -

Frank Simon, Philipp Goecke MPP Munich

CALICE Collaboration Meeting

September 2016 UT Arlington, USA

 $\Delta p \cdot \Delta q \geq \frac{1}{2} t$

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Reminder: T3B & FastRPC

 Dedicated detectors for time structure measurements operated behind CALICE prototypes at CERN SPS (T3B 2011 WAHCAL & SDHCAL, FastRPC 2012 WDHCAL)

Simulation Study of Shower Timing CALICE Collaboration Meeting, UTA, September 2016

2

What the Data tells us

• From the T3B and FastRPC measurements:

The interpretation:

Prompt component relativistic hadrons, em subshowers

Intermediate component substantial contributions by MeV - scale neutrons

Late component dominated by neutron capture

What the Data tells us

• From the T3B and FastRPC measurements:

4

The Simulation Study

• Study performed by Philipp Goecke

Main goal: Identify sub-processes responsible for late components, and for the difference seen between scintillator and gas - done by adding sophisticated process-tracking to T3B G4 simulations (see backup)

The Simulation Study

• Study performed by Philipp Goecke

Main goal: Identify sub-processes responsible for late components, and for the difference seen between scintillator and gas - done by adding sophisticated process-tracking to T3B G4 simulations (see backup)

Processes of particular interest:

Neutron elastic scattering

most efficient when scattering on protons - particularly relevant for hydrogenous materials: plastic scintillator Assumed to be behind the difference in the few 10 ns region - scattering of MeV - scale neutrons results in *O* 1 MIP signals

The Simulation Study

• Study performed by Philipp Goecke

Main goal: Identify sub-processes responsible for late components, and for the difference seen between scintillator and gas - done by adding sophisticated process-tracking to T3B G4 simulations (see backup)

Processes of particular interest:

Neutron elastic scattering

most efficient when scattering on protons - particularly relevant for hydrogenous materials: plastic scintillator Assumed to be behind the difference in the few 10 ns region - scattering of MeV - scale neutrons results in *O* 1 MIP signals

Neutron capture

capture of eV - scale neutrons on heavy nuclei, results in emission of few MeV photons Capture takes place in absorber, photons convert to e⁺e⁻ pairs (or e⁻ via Compton scattering), resulting in signal in sensitive volume - only "second-order" dependence on exact active material

Simulation Study of Shower Timing CALICE Collaboration Meeting, UTA, September 2016

The Simulation Study - News Since Kyushu

- Based on GEANT4 10.01.p02
- Two different geometries
 - W-DHCAL geometry for the simulation of FastRPC (fixed W composition) also used for scintillator by replacing the gas + glass volumes are replaced by plastic scintillator - about 3 mm of scintillator per layer
 - used for FastRPC MC, comparison of physics lists for both gas and scintillator
 - Full implementation of T3B geometry (as in T3B analysis paper)
 - used for T3B MC with G4 10.01, QGSP_BERT_HP only
- For scintillator data full T3B digitization is now again available
 - Accounting for photon statistics, SiPM afterpulsing etc, time distribution of muon response used to build reference digitisation
 - No sophisticated digitisation in RPC case time smearing taken from muon reference to account for time resolution of system and trigger jitter

Comparison of GEANT4 Versions

 In the T3B paper, we saw good agreement of the data with QBBC-based simulations (GEANT 9.4p03)

- We can now reproduce the old simulation results with re-implemented digitization
- GEANT 10.01p02 shows substantially lower activity in medium time frame: less MeV scale neutrons?

Comparison of GEANT4 Versions

• QGSP_BERT_HP in 9.4p03 and 10.01.p02

• Differences seen in the same region - G4 10 has less activity from 20 to 40 ns

8

What is different in GEANT4.10?

- Still at the beginning ongoing investigation
- The observation: mean time of first hit as a function of radius consistent

What is different in GEANT4.10?

- Still at the beginning ongoing investigation
- The observation: mean time of first hit as a function of radius consistent

- But: less "first hits" at larger radius results in less late hits in total
- Consistent with MeV scale neutron interpretation less pronounced "neutron cloud" in 4.10 -> would result in fewer hits at high r, since neutrons spread out most

Different Physics Lists

- Simulations in W-DHCAL configuration for scintillator gas + gas replaced by plastic
 - no digitization, no smearing

- QGSP_BERT and FTFP_BERT identical only HP shows differences
- Similar trends in gas and plastic: HP low at late times
 - in plastic also smaller differences observed in the 10 30 ns time frame (HP higher)

Where the differences are

 The dominant source of the differences: Neutron capture - points at less slow neutrons in the HP physics lists

e m

Simulation Study of Shower Timing CALICE Collaboration Meeting, UTA, September 2016

Frank Simon (fsimon@mpp.mpg.de)

Where the differences are

m

- In the 10 30 ns time frame n-p elastic scattering important source of differences in scintillator dominates over n capture
- At late times slightly higher rate in HP (but overall small contribution)

Simulation Study of Shower Timing CALICE Collaboration Meeting, UTA, September 2016

Conclusions

- Extended GEANT4 10.01 based simulations to different physics lists: See some differences between HP and non-HP lists in both scintillator and gas
- Have successfully re-established full T3B simulation & digitization, now also on **GEANT4 10**
 - We observe differences in the time structure of G4 9.4 and G4 10.1: Apparently less MeV - scale neutrons in newer G4 versions, below the T3B data
- Started looking at different physics lists see consistent differences in plastic and gas
 - HP has less late hits: less neutron capture for times > 50 ns

Backup

The Simulation Study - Process Accounting

- It is not sufficient to look at the particle that deposits the energy in the active medium: typically these are electrons, pions, protons (almost) never neutrons
 - also the direct parent is not enough: for neutron capture the energy is often deposited by electrons, which have a photon as parent
- Our solution: Each particle in our G4 simulation gets a process variable that stores information about all processes that have happened to that particle. When new particles are produced, they inherit the state of their parents.
 - Technically: A 64 bit integer allows to encode 64 different processes

one bit for each process implemented in the physics list In addition: Identification of neutron-proton elastic scattering (in G4 a sub-set of hadron elastic) specifically in active medium

T3B MC: Impact of Digitization

Old Results - Comparing Gas and Scintillator

17

Old Results: Neutron Contributions - Scintillator

- Dominant contribution of neutron elastic scattering between ~ 5 ns and 30 ns
- Neutron Capture Taking over at ~ 50 ns

Old Results: Neutron Contributions - Gas

- Neutron elastic scattering not relevant
- Neutron Capture Taking over at ~75 ns somewhat later than in scintillator

Old Results: Relative Contributions - EM

• Electromagnetic contributions important throughout the shower development

Old Results - Relative Contributions: Neutron Elastic

 In scintillator: Almost all energy deposits from 5 ns - 30 ns are connected to neutron elastic scattering in the scintillator

Old Results - Relative Contributions: Neutron Capture

 In the late shower phase (> 50 ns) almost all activity has a neutron capture in its history

