

University of Texas, Arlington, TX, USA, September 14 - 16, 2016

About (digital?) noise and Scurves

Jean-Baptiste CIZEL Rémi CORNAT

Scurves with or w/o enabling trigger

⇒ Shift of the S-curves position (Omega testboard measurement)

Channel

Plots: courtesy of Jean-Baptiste CIZEL 2

Modeling Scurves

« Real » pedestal S-curve (blue) & model (red) from which can be extracted the noise and the pedestal position (Measured on Omega testboard)

$$S(x) = 0.5 \left(1 - \text{erf} \left(\frac{|x - \mu|}{\sigma \sqrt{2}} \right) \right)$$
 • μ the pedestal's position • σ the RMS noise

$$P(x) = 1 - (1 - S(x))^{N}$$

Probability to have at least 1 triggers in N pseudo events

With:

- using $N = 2 \times f_c \times t_{acq}$ f_c the central frequency of the shaper
 - t_{acq} the acquisition time Courtesy of Jean-Baptiste CIZEL 3

S-curves on pedestals with $C_f = C_{comp} = 6 pF$ (test board) for 3 acquisition times :

- 100 μs (red);
- 1 ms (green);
- 10 ms (blue).

BUT: Data from FEV11, 8 triggers enabled

Counting any number of triggers (hits) in a spill as '1' (OMEGA method as used for test board+labview)

Max scale = number of spills

Same exp. data

Counting total number of hits for the whole acquisition (with saturation at 15 per spill) Max scale = 15*nb of spills

1st method make an artificial zoom on the « bump »

Bump & channel 37 (FEV11)

All the following is with power pulsing, all preamps powered

Time view of channel 37 & spectrum

Scurve of channel 37 alone (all others masked)

Retriggers (aka. Successive BX)

BX, BX+1...BX+N sampled in a burst

Re-triggers (aka. Successive BX)

MC sim. assumptions:

- normal distribution of initial number of hits
 - all channels independent (independent random trials)
 - (constant) high probability to trig if not triggered previously
 - (constant) low probability to trig if already triggered
 - stops when close to a max. of already triggered
- Nothing from chip's internal functioning (no SCA, ...)

- => Memory effect (state variable)
- => sum(hits)>64 explained assuming that a full chain of successive BX is in fact a concatenation of several independent sub-chains with a probability that the next sub-chain restart immediately after the previous one.

Guesses

- ⇒ Almost internal phenomenon
- ⇒ Self-sustained up to a certain point
- ⇒ Not really correlated to SCAs and internal timings/clocks
- ⇒ "Memory" effect can be explained as a charge accumulation injected from digital parts through substrate (change in offsets, bad bias of transistors etc.) ?

Indeed a correlation with double pedestal exists (detailed study by V. Balagura)

"NOT already triggered" state

Conclusion?

Need of a model for 2nd method Scurves (MC+poisson+gauss)

Evidences of "noise" due to internal triggers+digital activity together with a memory effect, this can cause :

- An instantaneous pedestal shift
- Main issue during the June TB
- Retriggers that can be self-sustained

Depends on trigger configuration (and more? -> behavior during June TB)

- ⇒ Nothing clear seen in PCB layout or package layout concerning channel 37
- ⇒ Would be interesting to test on COB board

Bump also seen on COB version (no package, different PCB)

• R. Poeschl https://agenda.linearcollider.org/event/6892/session/6/contribution/4

Part II SDHCAL - SiW ECAL Common test beam

Common TB (SDHCAL/Si-WECAL) in June @SPS

10 layers ECAL installed in front of m³ SDHCAL

Slow control & DAQ : ok

Common SPILL signal : ok, start with same value

Common Fast CLK: cabled, not used yet

Alignement of ACQ windows : ok (scope checked)

Configuration from master SW : ok

Run control from master SW: ok

Data exchange (in both directions): concept ok

ECAL – SDHCAL distance (detecting materials): ~ 7 cm

Si-W ECAL behaviour

High noise (apparently), but essentially retriggers

Trigger threshold had to be set rather high ~85% MPV

NOTE:

- Completely new detector
- 4 SLABS untested at Lab.
- No shielding (as with test plates)
- Soldered contacts (reliable but change in impedance of power lines)

Finally:

8 slabs in good state

2 slabs lost (after power cut which damaged 1 slab)

1st common run with muons Launched on June 16th

Common events found (plot : courtesy IPNL)

Note: 3D data not aligned

Priorities for the next steps

 Analyse June TB data and find a fix for the noisy behavior of the slabs

- Next engineering step is building a long detector module
 - 4 front-end boards together (4096 channels) already tested
 - Plans to partly equip boards with sensors then add boards (tools at LAL, LPNHE, LLR)
 - Increase FEV number up to [8..10]
- Plan a production of additional short slabs (up to ~20 layers)