

Silicon sensor studies in Kyushu

Taikan Suehara, I. Sekiya, H. Yamashiro, T. Yoshioka, K. Kawagoe (Kyushu University)

Topics

- Setup of full-sensor test
- First test of PSD
- Small DAQ setup

Full-sensor measurement

PCB with 256 ch independent readout designed (64 ch + 196 ch common implemented in the picture)

Base plate with silicon sensor

10 x 40 ch switching system for IV/CV measurement

Overview of curcuit

I/V measurement status

1	2	3	4	5	6	7	8	
9	10	11	12	13	14	15	16	
17	18	19	20	21	22	23	24	
25	26	27	28	29	30	31	32	
33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	
49	50	51	52	53	54	55	56	
57	58	59	60	61	62	63	64	

Single pixel readout is confirmed Need more careful shielding Mechanical problem occurred (PCB bent by pressure of springs) → adjusting setup

Position Sensitive Detector

Multiple electrodes in one cell to obtain particle position Popular technique in laser optics Used also in heavy-ion detectors

Possible for tagging photon position at innermost layer of ECAL by PSD array

First PSD sample in Kyushu meshed (left) and unmeshed 8 mm one side, 1 mm electrodes

PSD study with infrared laser

PSD holder to be connected to DAQ (CAMAC / testboard) Cross-shape holes to inject laser

1064 nm Pulsed YAG laser

Distortion study with laser/CAMAC

Calculated position from charge-sharing

Measured positions

Good correlation of measured and true position obtained Some distortion observed (as expected)

 \rightarrow To study with realistic signal raikan Suchara, CALICE meeting at UTA, 14 Sep. 2016 page 8

PSD - Next steps

- Noise study with DAQ (next topic)
 - Position resolution should be obtained
- Compare structures
 - Production with different parameters (resistance, mesh parameters, ...) need budget
- New ideas (next slide) need budget
- Simulation studies to estimate impact on physics

Will be applied for next competitive budget application

Low gain avalanche diode (LGAD)

- Si sensor with avalanche amplification
 Being studied by CMS for bunch tagging by Si sensor (~ 20 ps required)
 Hamamatsu is also investigating (first result will come in ~ a year)
 - Possible usage
 - PID in SET or ECAL
 - Improve position resolution if combined to PSD tech.

Small DAQ

Overview of small DAQ

Targets

- Realistic noise estimation with sensors
- Test of baby sensors of various specs
 Hardware
- SKIROC2 testboard with a 64ch cable
 Software
- Firmware: no modification from testboard
- Labview for config & s-curve
- Original DAQ (C++) for DIF-compatible output

SKIROC2

Noise studies

Noise > MIP if we connect sensors

- Capacitance?
- Noise from sensor?
- Power/GND lines?
- Trying to shield the sensor lines
- Remove GND loop
- Shield of sensor cable to GND
- etc.

< 1 MIP noise achieved

S-curve without test pulse at around 200 obtained (with some of events up to 250) → possible to see a MIP

S-curve with test pulse of 0/3/5/10 MIPs

Working to measure true MIPs

MIP vs. S-curve results (1.2 pF)

Reasonable S/N, but still larger than TB setup (~20) (slightly different criteria from that of real MIP)

- Periodic noise still exists
 → more effort reducing noise needed
- Apply to real MIP (cosmic, RI, ...)
- Compare sensors (PSD, ...)
- → Towards generic Si-sensor test setup

Summary

- Full-sensor test for IV/CV by each pixel
 - Setup assembled
 - Several issues to be solved
- Position sensitive detector
 - First measurement started
 - Proceed to detailed design
- Small DAQ for baby sensors
 - Noise reduction to < 1 MIP succeeded
 - Ready to measure real MIPs