Double-sided Readout Strip for ScECAL

W. Ootani, L. Liu, N. Matsuzawa, M. Usami ICEPP, University of Tokyo

CALICE collaboration meeting Sep. 14th-16th, 2016, University of Texas, Arlington

This study was partly supported by JSPS-Germany Research Cooperative Program.

Small-Cell Photosensor for ScECAL

SiPM with small pixel pitch (~10µm) is required for ScECAL to improve dynamic range.

Issues on SiPM with small cell

- Lower gain → poor single p.e. resolution
- Lower PDE → lower MIP yield
- S/N of EBU analog front-end is not good enough for small-cell SiPM

W.Ootani, "Double-sided Readout Strip for ScECAL", CALICE Collaboration Meeting, Sep.14-16, 2016, University of Texas, Arlington

Possible Solutions

- Improve gain/PDE of SiPM
- Increase photon yield
- Increase sensor area
- Improve S/N at EBU readout
- A little larger pixel pitch (15µm?)
- Double SiPM readout

Double-sided Readout Strip

Double SiPM readout at both strip ends

Possible advantages

- Suppress random hit by taking coincidence → Lowering MIP threshold
- More uniform response
- Higher light yield
- Scintillation photons shared by two SiPMs → Mitigation of saturation
- Position reconstruction → Remove ghost hits

Issues

- Need longer strip to keep # of SiPMs (90mm instead of 45mm)
- More saturation with longer strip?

Prototype Test of Double-sided Readout

Preliminary test of double-sided readout

- Double sided readout with 90mm strip (2×5×90mm³)
- Scintillator: EJ-232 wrapped with ESR film
- SiPM: 8585 (1×1mm², 25µm-pixel)
- Setup was not optimal.
 - Modest light yield of EJ-232
 - Emission spectrum of EJ-232 doesn't match SiPM response
 - Short attenuation length (~8cm) of EJ-232
 - Better to test with SiPM with 10µm-pixel

Further test with optimal scintillator and SiPM is ongoing as shown later

W.Ootani, "Double-sided Readout Strip for ScECAL", CALICE Collaboration Meeting, Sep.14-16, 2016, University of Texas, Arlington

Response of Long Strip

Good performance even with this preliminary setup

- Reasonably high light yield
- Good uniformity
- N.B. preliminary results from improved setup will be shown later

Position Reconstruction

Two possibilities

- Charge ratio
 - Difficult due to
 - Low N_{pe} statistics
 - Large fluctuation of MIP energy deposit
- Time difference
 - σ~4cm measured with preliminary setup
 - Not promising but still to be improved with larger N_{pe} statistics with optimal scintillator/SiPM

Prototype Test with Improved Setup

Improved setup

- Scintillator
 - EJ-212 (~BC400)
 - General purpose
 - Higher light yield
 - Longer attenuation length (~160cm)
 - Emission peak: 423nm → better matches SiPM response
- SiPM
 - MPPC S12571-010P (1×1mm² 10µmpixel)
 - Lower PDE

Setup is still being optimised.

• Results shown here are preliminary.

Wavelength (nm)

Results

Improved performance w.r.t. previous test

- Higher light yield by ~50%
- Better uniformity thanks to longer attenuation length
- N.B. measurements are a little unstable for some technical reasons, to be improved

Results

Comparison with 45mm strip with single-side readout

- Total N_{pe} is increased by ~45% \rightarrow Better N_{pe} -statistics
- N_{pe} for each SiPM is slightly decreased \rightarrow Slightly less saturation

90mm strip with double-side readout

Other Issues for Longer Strip

Possible issues

- Larger energy deposit per strip for Bhabha event? → more saturation
- More ghost hits?

Effects of strip length studied by MC simulation

- Studied by Kotera-san
- √s = 500GeV, 1TeV
- Bhabha events @θ~90°
- No digitisation simulated. Compared energy deposits only.

Energy Deposit per Strip

Considering Bhabha events at $\sqrt{s} = 500$ GeV, 1 TeV

W.Ootani, "Double-sided Readout Strip for ScECAL", CALICE Collaboration Meeting, Sep.14-16, 2016, University of Texas, Arlington

K. Kotera

Jet Energy Resolution

JER slightly worsened for longer strip due to ghost hits

Can be improved by

- Additional tile layers
- Position reconstruction with double-sided readout (?)

Summary

- Double-sided SiPM-readout under study to improve performance of strip with small-cell (10µm) SiPM
- Looks promising, although results are still preliminary
 - Higher light yield
 - Good uniformity
 - Possibility of position reconstruction with double-sided readout
 - Found in MC simulation that calorimeter performance is not worsened with longer strip in terms of highest energy deposit and JER.

• To do

- Further performance studies with improved setup
 - Improve systematics of measurements
- Test of position reconstruction
- Test of coincidence at both ends
- Double-sided readout with SMD SiPMs