

1

14th September 2016

Strip Calorimeter beam test at ELPH in Tohoku U with electron beam

K. Kotera *et al.,* Shinshu University CALICE meeting @Arlington

Activity in Shinshu

HCAL

Strip scintillator HCAL

Segmented Lead glass Čerenkov calorimeter ECAL Segmented Lead glass Čerenkov calorimeter

Strip scintillator ECAL on EBU

Test Combination of those three detectors.

\$

9×1×0.3cm³ strip × 2 (cross): trigger

EBU 45×5×2mm³ strip×144 (18×18cm²) × 2: ECAL part

3×3×4cm³ lead-glass × 9 (area9×9cm²) × 3: HCAL absorber

18×1×0.3cm³ strip × 9 (area18×9cm²) × 6: HCAL part

9×1×0.3cm³ strip × 2 (cross): trigger

EBU 45×5×2mm³ strip×144 (18×18cm²) × 2: ECAL part

3×3×4cm³ lead-glass × 9 (area9×9cm²) × 3: HCAL absorber

18×1×0.3cm³ strip × 9 (area18×9cm²) × 6: HCAL part

9×1×0.3cm³ strip × 2 (cross): trigger

EBU 45×5×2mm³ strip×144 (18×18cm²) × 2: ECAL part

3×3×4cm³ lead-glass × 9 (area9×9cm²) × 3: HCAL absorber

18×1×0.3cm³ strip × 9 (area18×9cm²) × 6: HCAL part

9×1×0.3cm³ strip × 2 (cross): trigger EBU 45×5×2mm³ strip×144 (18×18cm²) × 2: ECAL part

3×3×4cm³ lead-glass × 9 (area9×9cm²) × 3: HCAL absorber

18×1×0.3cm³ strip × 9 (area18×9cm²) × 6: HCAL part

9×1×0.3cm³ strip × 2 (cross): trigger

EBU 45×5×2mm³ strip×144 (18×18cm²) × 2: ECAL part

3×3×4cm³ lead-glass × 9 (area9×9cm²) × 3: HCAL absorber

18×1×0.3cm³ strip × 9 (area18×9cm²) × 6: HCAL part

9×1×0.3cm³ strip × 2 (cross): trigger

EBU 45×5×2mm³ strip×144 (18×18cm²) × 2: ECAL part

3×3×4cm³ lead-glass × 9 (area9×9cm²) × 3: HCAL absorber

18×1×0.3cm³ strip × 9 (area18×9cm²) × 6: HCAL part

Purpose

Evaluation of segmented-lead-glass/scintillator strip system to EM showers.

Energy resolution, esp. lead-glass part angular position

- EBU modification of status (MIP, p.e. separation) using high light yield scintillator strips.
 - provide fine position information.

Others

Practice of CALICE E/HBU DAQ with CCC and LDA.

Practice of Firmware coding of FPGA in Easiroc Module: internal coincidence for trigger so on.

Each detector part

Trigger counter and tail catcher

Trigger counter

2 scinti-strips in HCAL

MPPC S10362-11-25P, $25\,\mu\text{m}$, 1600pix on $1\,\text{mm}^2$ 2008 products

EBUs

180 mm

Lead-glass counters

MPPC (S13360-3050CS)

- Pixel pitch: 50µm
- Effective photosensitive

area: 3.0mm×3.0mm

- Number of pixels: 3600
- Package: Ceramic
- Window material: Silicone resin
- Refractive

index of window material: 1.41

black edge lines were artificially added

<u>DF6</u>

- Size : 30×30×40 mm³
- Refractive index: 1.8
- Density: 5.20 g/cm³
- $X_0 \sim 1.7 \text{ cm}$
- R_M ~ 3.9 cm
- $\lambda_0 \sim 17 \text{ cm}$
- each block is wrapped with reflector film: 3M radiant ESR2 32μm

Sensitivity of Lead-glass

Sensitivity of Lead-glass

Sensitivity of Lead-glass

2.35 X₀

4.70 X₀

7.05 X₀

600

Llead2 11

10000

132.1

81.48

Entries

Std Dev

Mean

500

Scintillator strip layer

MPPC S10362-11-25P, 25 μ m, 1600pix on 1mm² 2008 products

S10362-11-25P

Position resolution(CoG)

MC:

 $1 \text{mm}\phi \text{ beam} \Rightarrow \sigma_{\text{Center-of-GravitationE}} \\= 8 \text{mm} \text{ in } 10 \times 90 \text{mm}^2 \text{ strips},$

position resolution was already smeared by CoG fluctuation.

w/o absorber layers → mip track.

Exp:

10mm trigger → How much smeared?

5mm EBU → How much smeared?

2.5mm EBU grid → How much smeared?

two shift EBUs make narrow grid.

Extract the kernel width due to σ_{CoG}

DAQ / synchronizations Thanks for Jiri

DAQ / synchronizations Thanks for Jiri

Timing

CCC/EBU	mediation	Easiroc module
# cycle 📢	CCC command	slow time stamp
# bunch crossing	40MHz clock	first time stamp

Things ToDo

- Adjust timing DAQ check with CCC, LDA, EBU, Easiroc × 2,
- Easiroc Firmware for TDC; Coincidence for triggers has been done,
- Fabricate 27 lead-glass Čerenkov counter,
- assembly of detectors in a frame.

Summary

- Segmented lead-glass Čerenkov calorimeter and 90×10mm2 scintillator strip calorimeter will be tested with ~1 GeV electron beam at ELPH of Tohoku U.
- EBU will be used as a position finder and practice of DAQ.
- two Easiroc module and two EBUs are combined with a DAQ synchronization.
- Easiroc firmware is modified for the above purpose.
- This experiment use only SiPM as the photon detectors.

backup

Timing

Timing simulation

cycle_clk(CCC_CMD)の次に hold

Name	Value	0 ns I I I I I I I	ľ	200 ns	!	400 ns	 600 n <i>s</i>	1900 ns
🕼 cmd_1bit	х							
cycle_num[1]	x							
Ug cycle_num[0]	x							
Up tdc_val[3]	ж							
Te tdc_val[2]	н							
1 tdc_val[1]	ж							
🗓 tdc_val[0]	х							
1⊌ rst_n	1							
16 cik	0		ппп	nnnn	nnn			
🐻 cycle_clk	0							
1 hold	0							
Cycle_rising_edg	x	_						
hold_time_sig	x							
cycle hold sig	x							
		X1: 0 000 ns						

Timing simulation

holdの次にcycle_clk

Timing simulation

cycle_clk と同時に hold

		0.000 ns				
Name	Value	0 ns	200 ns	400 ns	600 ns	800 ns
Cmd_1bit	х					
Cycle_num[1]	Х					
Cycle_num[0]	х					
Te toc_val[3]	Х					
tdc_val[2]	х					
le toc_val[1]	х					
tdc_val[0]	х					
🐻 rst_n	1					
76 clk	O		nonnan		nnnnn	
🚡 cycle_clk	0					
🚡 hold	0					
cycle_rising_edc	х					
hold_time_sig	Х					
cycle_hold_sig	x	.				
		X1: 0.000 ns				
						36

Angular measurement

Research Center for ELectron PHoton Science in Tohoku Uni.

Sendai Station

