

News on the KLauS ASIC

- New KLauS prototype
 - The ASIC
 - Power consumption
 - Digital part & IO

Test board

Konrad Briggl, Huangshan Chen, <u>Yonathan Munwes,</u> Wei Shen

KIP, Uni Heidelberg

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

New multi-channel prototype

Taped out first multi-channel prototype in May 2016

Expected back in next weeks 1.5 x 4.5 mm² miniASIC (Final 36 channel chip size 5x5mm²) Initially planned 10 channels, limited space did not allow this, so:

7 Front-End + ADC + digital channel control modules

1 TDC-only channel (external time reference)

1 ADC test channel (separate)

Digital part

Structured as future 36 channel version Different readout options: Fast LVDS (160Mbit/s), slow I²C link

Front-end: Blocks

Input stage: Distribute current signal to 4 processing branches:

Analog processing "High gain" - SiPM gain calibration: Small range, low noise (ENC) Expected noise ~3fC

"Low gain" : Full SiPM dynamic range Expected range ~160pC

Comparator branches

Event trigger

initiate ADC conv., time stamp Lowest threshold

~1-2p.e. for 10um MPPC (20fC)

HG/LG selection

 \rightarrow 1 to 1 coupled to ADC

Front-end connection to ADC & Digital part

One ADC reading / event No analog memory Direct conversion to digital

ADC input Selection: Force HG readout Force LG readout Automatic HG/LG External source (ADC calib)

2 ADC modes 10bit for MIP quantization 12bit for single photon spectra

Time stamping 12Bit coarse counter (25ns bins) TDC with fine bins in future versions

Power consumption & gated operation

DC power consumptions (when switched on)

Channel $\approx 2.9 \text{ mW}$ Shared bias block $\approx 2.4 \text{ mW}$

Power pulsing control

Single CMOS control pin Internal power-up delays tunable using the slow control interface

- 1 Hit processing in analog stage
- ② Channel digital part: control ADC conversion of peak voltage, storage of TDC data & flags
- ③ Storage in internal buffer (2 levels of FIFOs)
- ④ Serialization through LVDS or I²C interfaces

Channel hit counters read out by I²C transaction (SMBUS block read) Slow control via SPI, will be replaced by I²C later (SMBUS block r/w)

CALICE meeting Arlington

Digital part: Data flow

Event data only stored in buffer when hit

<u>3 Levels of data storage</u>

(L0) – Channel digital part: For each channel, 2 hits depth
(L1) – First level FIFO buffer: 3 Groups of channels, 64 hits depth

(L2) – Second level FIFO buffer: For all channel groups, 128 hits depth

\rightarrow Total buffer size 330 hits

Possible to adjust as needed in later versions_

Digital part: Event validation

In first level FIFO:

- Keep events until validation decision
- Drop non validated events in window
- Larger matching window
- Configurable width and offset
- External source

During ADC conversion:

- Cancel ADC conversion if not validated
- 25ns-200ns window
- External source, or
- Neighboring channels (basic coincidence building)

Hit signal A ADC busy Window (1-8 clk)
Hit signal B ADC busy : validates hit A

KLauS4 test board

New test board is being designed by the KIP electronics workshop

Allows to validate chip in lab-setup

- Charge injection connectors
- Single SiPMs (pin headers)
- ADC test channel connectors
- Test both read out options (I²C, LVDS), analog monitor outputs
- \rightarrow Validate chip in lab setup Noise, Dynamic range, Powergating behavior ...

Test performance under realistic conditions

KLauS4 test board

Compatibility with CALICE HBU dimensions

- Possibility to participate in future CALICE testbeam campaigns
- SMD MPPC pads distribution similar to HBU
- Form factor & overall height (PCB thickness, component height) allow insertion into EUDET stack
- LED system design taken from HBU3 Thanks Mathias & Katja for the input!

Summary & further development

- 7 channel chip will arrive this month
- Full characterization until end of Q1 2017
- Participation in following test beam campaigns planned
- 36 Channel version available until end of 2017 / beg. 2018

Backup slides

SAR ADC development for KLauS

1 ADC per front-end channel

Development of low power, fully differential SAR-ADC

Two operation modes:

MIP quantization – **10bit resolution** 9+1(sign) bit SAR ADC

SiPM gain calibration – **12bit resolution** Additional pipelined stage (8 bit SAR) Residual amplification & digitization

8b

8b pipelined

Front-End, ADC & channel digital control

Digital sources from front-end:

- External / self generated trigger
- Gain selection result
- Hold & Start signal for ADC

FE hitlogic block:

- \rightarrow Initiate conversion after peak sampling
- Handshake with ADC control: start, busy
- Mask trigger pulses while ADC is busy

L0 & Coincidence event validation

First level event validation:

No validation flag - ADC conversion canceled \rightarrow Also reduces dead time

Validation signal sources:

- External source
- Internal validation: Coincident events between channels Configurable OR of group of 12
- \rightarrow Validation window 1..8 Clock cycles
- → External validation: maximum delay: ~300-500ns

Trigger branch: Threshold setting

Two DACs to tune threshold:

- Global 6 bit DAC + scaling (for all channels)
- 4 bit DAC for fine-tuning (each channel)
- → Charge noise: 8fC typ.
- → Threshold configuration resolution (4b DAC): 5fC

Data structures

Channel hit information comprised of 38 bit

To send the data byte-wise, two bits are appended at the end \rightarrow 5 byte / hit

GRP ID	CHAN_ID	Gain select	ADC busy hit	Main ADC	PIPE ADC	TDC CC
2 bit	4 bit	1 bit	1 bit	10 bit	8 bit	12 bit

LVDS interface:

- 160Mbit/s, 8b10b encoded data stream
- Frame structure consist of

Header (clock synchronization, frame size, frame ID), event data and Trailer (CRC16)

I²C interface:

- Raw I²C read access from the chip,
- When buffer empty: Invalid events flagged by Channel number == 63