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Introduction

@ RPCs are commonly used in particle detectors
@ Full simulation for RPC not common but also very slow

@ Can be used to preview the impact of a sSDHCAL design change
(gas, gap length, materials ...)
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e Resistive Plate Chambers
@ Basic design
@ Gaseous mixture
@ Context and Objectives



Basic single-gap design

@ Gapis 12 mm wide
@ Anode and cathode (10'? Qcm, €, ~ 7) 7 and 11 mm wide

@ HV of 6.9 kV between plates ( 57.5 kV/cm)

Gas Gap

Cathode
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Gaseous mixture

@ The gaseous mixture is maybe the most vital part of a RPC as it
influences many key characteristics :
— ionisation (number of electrons freed)
— multiplication gain
— electron drift velocity (influences signal amplitude and timing)

@ usually mixture is composed of @ mixture used for this

3 gases : presentation :
1. ionizing gas ~ 95% 1. TFE C2HyF, 93%
2. UV quencher gas ~ 4% 2. CO2 5%

3. electron quencher gas ~ 1% 3. SFs 2%



State of the art and objectives

@ Full simulations for RPC are not widespread and often incomplete
— unadapted mathematical distribution (Polya) which lacks physical
interpretation
— overlook important phenomena

@ Model that describes the main processes of an electronic
avalanche (Riegler-Lippmann-Veenhof)

@ Full and multi-threaded Monte-Carlo simulation

@ Portable, easily modifiable and usable on various hardwares



e The physics behind and its simulation
@ Avalanche modelisation
@ Diffusion
@ Space Charge Effect
@ Signal Induction



lonisation

@ charged particle crossing the gas gap — ionisation
@ each ionisation event = electron clusters
@ charge deposit characterized by two things

— the probability distribution for
the number of electrons by
cluster

— the number of clusters by
unit of length
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Electron multiplication

@ electrons drift under the influence of the electric field and multiply
by interaction with gas molecules (avalanche)

@ evolution of the number of electrons conditioned by two

coefficient :
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Avalanche development model (W. Riegler and C.

Lippmann)

@ average numbers of e~ and positive ions :

n(xr) = ela=mz

p(z) = ” i ; (e(o‘_n)”"’ — 1)

@ stochastic multiplication and attachment for one e~

0, s < kel

n(x

(2)=F
n(x)—k)(1—s n(z)-1
1+ floor lln <( dolien )> (1= = )] s

x
z)—
n(z)—k

with s a random number € [0,1), k = n/«

here x is the drifted distance )
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Multiplication procedure

@ gas gap divided into N steps of Az (~ um)
@ clusters are put into their respective bin

Case of one cluster at z

@ ny electrons present at xg

@ each one of the n( electrons will multiply according to the previous
formula and we find n; electrons at x = zp + Ax

@ In the same way, the n electrons will multiply and we find ny
electrons at x = xg + 2Ax

— This procedure is iterated until all the electrons reach the anode
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Multiplication procedure
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@ Thermal diffusion motion superposed by drift motion =
anisotropic diffusion
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Space Charge Effect

@ When the number of charges in avalanches is high enough they
influence the electric field and thus the values of « and n =

Space Charge Effect
g )] e

E2<EO

+

EO
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Space Charge Effect

@ When the number of charges in avalanches is high enough they
influence the electric field and thus the values of « and n =
Space Charge Effect

ne = 10% ry = 0.1mm

= E, =15kV/cm

3% of typical RPC field (~ 50 £V/em)
— 10% change in coefficients (and so
in multiplication gain)

Approximation to feel its impact :
charges lie in sphere of radius ry4

€0 e

r = D)
dmegry

@ Space Charge Effect leads to a saturation of the number of
produced electrons

@ Fully modelised by computing the field of all the charges in gas
gap
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Space Charge Effect illustration
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Signal Induction

@ Output signal is only due to the movement of electrons in the
electric field

0.025 -

— electrons in gas are not collected .,
on electrodes as they are
absorbed by resistive layer =00 T

— electrons movement induces ‘f,.
= 0.010
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— ions don’t contribute due to their -

small drift velocity
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@ Generalised Ramo’s theorem to compute induced signals
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e Preliminary results
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=

Induced current

@ Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm

@ Glass @ 102 Qem
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Efficiency

@ Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm
@ Glass @ 102 Qcem
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Influence of pressure

@ Cathode 0.11 cm, Anode 0.07 cm, Gap 0.12 cm, HV 57.5 kV/cm

@ Glass @ 10'2Qem
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e Conclusion and perspective
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Conclusion and perspective

@ Model that takes into account the main physics processes
@ Work in progress
@ Gives coherent results regarding sDHCAL observations

@ 1D model at present. 2D model gives better precision and results
but much slower (not implemented yet)

@ Room for improvements

— using GPU (CUDA or OpenCL) may give a significant speedup in
certain cases
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BACKUPS
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The simulation and libraries used

@ UNIX POSIX thread library
@ Using the ThreadFactory (P. Schweitzer) to spawn threads and
allocate events (one thread reserved for output writing)

@ MRG (RngStreams (LEcuyer)), Mersenne-Twister and
SIMD-Oriented Fast Mersenne Twsiter for random number
generation

@ Using Garfield framework with HEED (1.01) and Magboltz (9.01)
for electron gas transport parameters and particle-gas interactions

@ Gnu Scientific Library (QUADPACK) for integral computation
(could be removed in the future)

@ TinyXmI2 for configuration file parser

@ Except Garfield (which use ROOT) and GSL, doesn'’t rely on a lot
of libraries, all included in src
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Electronic avalanche
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Avalanche development model continued

n(z)—1
07 s < kﬁ(:c)—k ~0
n= (7(x)—k)(1—s) 1 A(z)—1 a,n
1+In ( n(z)(1-k) ) ln(l_ﬁ(lx_)]ik) » 82 kﬁ(m)—k
07 s < 1—?—29:
TN 141 —s) (14 o) 7, s> AT
1n(1+ax) ar
0, s< (=)
n_{l, s> el=m%) a=0
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Central Limit theorem

CPU-intense procedure = very time consuming ! ]

— Unadapted to the simulation of a large number of event

— We make use of the Central Limit Theorem :

when n; is big enough we draw n;,; from a gaussian

uw=n;n(Ax) oorr = \/nio(Ax)

o2 (Az) = Gfi) A(Az) (A(Az) — 1)

29/24



Central Limit theorem
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Primary ionisation
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Transverse diffusion

= Transversal : we consider the charges to be contained in a disk
with a Gaussian radial distribution (¢7) with o = D7v/1 where [ is
the drifted distance

Ay

: r point of observation

| l (r=0, z, $=0)

| L/
i ( X
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| /q’ |

v B —— - —
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Space Charge Effect - potential

1ot _i 1 _ (51752)
O(r, ¢, 2,7, ¢, 2") —47@[ PiG-F (it VPiGi)
_ (e —e2)
v/ 7T
R(k,z,7")
E e 52+€;)/ dr T+ P) =5
0<2<g;

(1+e2)’(e2+2)’ [e”"z“’Q“”’z’) + e“’z“’z"’l””] -
(51 + 62)2 (62 _ 6;3)2 en(—r1q—2q+z+:’) _
deyea(er +23)7 B — (21— 29)° (e +25) X —

(61— &) (2 — €3)” e(Tlotzts)

D(k) = (e1 +¢2)(e2 +€3) (1 — Piz'”(p”))

- (51 - 52)(52 + 83) (672’@ - 672’%) (&" =) (2 + ) {76’”(’2"’2‘7"”/) 4 erre= 5"(’2""“/)] -
_ (51 + 52)(52 _ 83) (672'{ (p—g) _ 672N(q+g) 4 (612 _ 62‘2> eres er(=2p—2q+2+2) _ A+ fz)zfz B er(=2tats)
(a1 —e2)’ (e0” —&5%) € =272 | fey ey (e0° — &) erCam2p=2a=a) 4

(e — e) (720 — ) UL T

[76472%27“7;’) _ er(2g-20—2+) +e.&(72972p7‘2q+z+zl)} +

(67— er?) (et = o)

[Cﬁ(:zgszqsz/) _ orl=2gtams) _ on(—2g—x+2) +EA(72g72p+z+z/):| )

33/24



Space Charge Effect computation

@ The unit charge is assumed to be contained in a disc
perpendicular to the z-axis, so its electric field is

o o
E(z,1,7) = _/ or(r'1) 9¢(z,1",2") !
0 0z

@ Then the total space charge field at z is given by summation of all
the discs :

N
ESC(Z) = Z an(ZTb ln7 Z:z)
n=0

Very time consuming ! )
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Space Charge Effect

— Need to compute an integral inside another integral (semi
improper) = Very time consuming

— Values of E are loaded in memory from a pre-computed table.
Using interpolation during simulation
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Ramo’s theorem

1=¢egF v, J

— doesn’t hold in case we have resistive materials =
time-dependent fields

= Maxwell's equations in quasi-static approximation, for medium
with time- and space-dependent permittivity and conductivity
(sparing some ugly algebra we have)

i(t) = % /O Bo (3,1 — )i ()t

@ FEy is the weighting field, ie the field in detector if all conductors
grounded but one put to voltage V. Depends only on detector
geometry
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Weighting field

clectrode T
resistive layer
dr, ' 7| e single gap chamber with resistive
layers of permittivity e,; = ¢,.0,
. Tve , gas of ¢, ~ £

E\I;(t) _ Er 5t
1;Zs;1st1ve layer . - VO ( drl + dm) + gng
w

: Er
i(t) = eg N(t) ve

(dry +dry) + erdg
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Ramo’s theorem

Conductor

Conductor

o Make use of Green’s theorem
with volumes V (detector) and V,
(surrounding the electron)

e V is potential between
conductors (removing space V.),
V. potential including electron

e consider conductors are
grounded except A which is put
to 1V and electron is removed :
VoV V.= V!

e playing with Green’s theorem with potentials defined above we get

Qa=—ey- V!
_dQa _ Ve 9Vidz
Tt dt Y or dt

i=¢eqgEv,
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