CALICE Collaboration meeting Arlington University - September 2016

MRPCs for SDHCAL

Do-Won Kim¹, Zheng Liu², Woosung Park¹, Osnan Rodriguez², **Sofia Vallecorsa¹**, Crispin Williams², Roman Zuyeuski²

¹Gangneung-Wonju National University, ²CERN

The Idea:

A SDHCAL module using Multi-gap Resistive Plate Chamber

- Iffective area : 1m x 1m
- signal pad segmentation : 1cm x 1cm
- Iectrodes : 96 x 96 square pads
- time resolution : better than 100ps
- ounting rate : better than 1,000Hz/cm²

IPNL – GWNU collaboration within AIDA-2020

Outline:

- Second prototype
- Performance
 - Test beam
- Electronics
- Current & planned activities

Why MRPC?

- High precision time measurements
- Large efficiency plateau with no streamers
- Reasonable cost even for large areas
 - 16k channels of MRPC produced for ALICE-TOF (INFN Bologna, Salerno, GWNU, ITEP)

(*) Nuclear Instruments and Methods in Physics Research A 594 (2008) 39– 43 Nuclear Instruments and Methods in Physics Research A 629 (2011) 106–110 3

First prototype

- Im x1m chamber
 - 5 glasses, 400μm /280 μm
 - 4 gaps, 300µm
- Isolation via mylar layers
- Fishing lines and double sided tape + mylar as spacers
- 4 GeV protons test beam + cosmics

Good efficiency but very high dark current (~10 μ A @10 kV)

4

Second prototype

Layout

- 5 1mx1m glasses
 - 2 external 400µm thick glasses
 - 3 internal 280µm thick
- 4 gaps, 300µm wide
- Isolation via mylar layers
 - Top: 50 µm thick
 - Bottom: 295 µm thick
- Spacers
 - Fishing lines + teflon supports (nuts)
 - Double sided tape + mylar

Second prototype

Main differences wrt first prototype

- Changed fishing lines structure
- Glue nuts to external glass (no longer on the metal box)
- Uncoated edge on external glasses is larger (1-2 cm) to reduce DC

Performance

Test beam results

- 2 weeks during May 2016 at T10 in the PS East Area
- 4 Gev protons
- Trigger using coincidence of 2 scint+PMT
- GAS: 98% TFE (Tetrafluorethane + freon 134a) + 2% SF_6 @ ~5 l/h
- 90% efficiency at 11.6kV for the lowest threshold

Performance

Noise and dark current

Factor >50 below what we had in the previous prototype

Electronics

- Started a collaboration with Omega group of the Ecole Polytechnique in Palaiseau to use the PETIROC2 chip
- 32-channels front-end ASIC (positive and negative signal polarity)

- Fast and low-jitter trigger (on first photo-electron)
- Accurate charge and time (<40ps) independent measurements.
- Times are digitized internally with a Time to Amplitude Converter and 10 bit ADC.
- First tests using a 1 chip board

PETIROC-2 tests

Cosmic rays setup

- PMTs + scintillators triggers
- Signal from two"small" MRPC chambers (~20x20cm)
- 2000s FPGA acquisition frame
- PETIROC2 chip is reset every 50 µs to reduce noise

PETIROC2 tests

On-going work & Plans

Test different painted glasses

- Test different gas mixtures
- Mew 1mx1m chamber with 5 narrower gaps (~220 μm)
- Electronics:

We be a new board with 2 PETIROC-2 chips and then 48 chips

Mext scheduled test beam in October

Thank you!