Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

Jacqueline Yan (KEK)

On behalf of H. Baer (Univ of Oklahoma), M. Berggren, S.-L. Lehtinen, J. List (DESY), K. Fujii (KEK), T. Tanabe (Univ of Tokyo)

ILD Software

and Analysis Meeting

July 13, 2016

Outline

Extraction of Higgsino mass and cross section

SUSY parameter determination

Goals and plans

Motivation for Searching Light Higgsinos with Small ΔM

From experimental point of view:

- LHC already excluded large regions with large ΔM = M(NLSP) – M(LSP)
- Remaining region with compressed spectrum very small visible energy release, near impossible to probe at LHC
 - ➔ ILC is essential

From theoretical point of view: Compressed Higgsino spectra related to

naturalness [e.g. arXiv:1212.2655, arXiv:1404.7510]

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

• To maintain small electroweak fine tuning ΔEW (<~3%), all contributions on right-hand-side

should be comparable to M(Z) \rightarrow requires $\mu \sim 100-300 \text{ GeV}$

top and bottom squarks in the few TeV regime, gluino mass 2–4 TeV, 1st, 2nd generation squarks and sleptons in the 5–30 TeV regime

- μ feeds mass to both SM (W, Z, h) and SUSY particles (Higgsinos)
- Higgsino masses not too far from masses of W, Z, h (~100 GeV)

Benchmarks in this Study

RNS model (Radiatively-driven natural SUSY)

(LSP)

• 4 light Higgsinos:

 $\widetilde{\chi}_1^0 \quad \widetilde{\chi}_2^0 \quad \widetilde{\chi}_1^+ \quad \widetilde{\chi}_1^-$

- ΔM about 10-20 GeV complies with naturalness (ISR tag not needed)
- This study: $\sqrt{s} = 500 \text{ GeV}$ Full detector simulation

Currently studying ILC1 benchmark

(Pe-, Pe+)	(-1.0,+1.0)	(+1.0,-1.0)	
$\sigma(\chi_1^+\chi_1^-)$ [fb]	1800	335	
$\sigma(\chi_1^0 \chi_2^0)$ [fb]	491	379	

$BR(\chi_1^+ \to \chi_1^0 q q')$	67%
BR(χ ₁ ⁺ → χ ₁ ⁰ lν) (l=e,μ)	22%
$BR(\chi_2^0 \to \chi_1^0 q q')$	58%
BR(χ₂⁰ → χ₁⁰ II) (I=e,μ)	7.4%

NUHM2 model parameters [arXiv:1404.7510]

Benchmark	ILC1	ILC2	
M ₀ [GeV]	7025	5000	
M _{1/2} [GeV]	568.3	1200	
A ₀ [GeV]	-10427	-8000	
tanβ	10	15	
μ [GeV]	115	150	
M _A [GeV]	1000	1000	
M(χ ₁ ⁰) [GeV]	102.7	148.1	
$M(\chi_1^{\pm})$ [GeV]	117.3	158.3	
M(χ ₂ ⁰) [GeV]	124.0	157.8	
M(χ ₃ ⁰) [GeV]	267.0	538.8	

Higgs precision measurements useful for parameter determination Defined at GUT scale Defined at weak scale Observables

Existing studies

- (1) "Tackling light higgsinos at the ILC", M. Berggren et al. [arXiv:1307.3566]
- Vs=500 GeV, $\Delta M \sim 1$ GeV \rightarrow use ISR tag, , Based on full ILD simulation
- (2) "Physics at a Higgsino Factory", H. Baer et al. [arXiv:1404.7510]
- v Vs= 250 (340) GeV for ILC1 (ILC2), ΔM = 10-20 GeV, detector effects based on resolution formula

Ongoing studies

Light Higgsinos with $\Delta M = 10 - 20 \text{ GeV}$, J. Yan, T. Tanabe et al Vs = 500 GeV, $\Delta M \sim 10\text{-}20 \text{ GeV}$, Based on full ILD simulation

How do these signals look in the detector? (1)

√s =500 GeV

How do these signals look in the detector? (2)

√s =500 GeV

Event Selection

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$

- Reconstruct two leptons (ee or μμ) which originate
 from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2-γ processes are removed by BeamCal veto, cuts on lepton track p_T, and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg.

(signal significance > 100)

signal

(16)

2-v

 μ^{-}

1

signal

Ζ

 $\gamma(4)$

vvII

1

 $\bar{\nu}_e$ (8)

Extraction of Higgsino Mass [work in progress]

- Neutralino mixed production with leptonic decay $e^+e^-
 ightarrow \widetilde{\chi}^0_1 \, \widetilde{\chi}^0_2
 ightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$
- The position of the kinematic edges of the dilepton energy (E_{II}) and invariant mass (M_{II}) are functions of CM energy and the two neutralino masses.
- The maximum values E_{II,max} and M_{II,max} are extracted by a fit to obtain the neutralino masses after correcting for detector/reconstruction effects`

Similar for case of chargino pair production (II \rightarrow jj)

Cuts have been designed so as not to destroy upper edge

- Use toy MC (generated from MC data fit) to evaluate statistical uncertainty
- Making progress in kinematic edge extraction

Edge extraction precision ~1 %

Extraction of Cross Section [work in progress]

Strategy: Fit overall shape to estimate total number of signal events

The results of Higgsino mass and cross section become input to the parameter fit to extract SUSY parameters (e.g. Wino and Bino masses, $tan\beta$, etc.)

14

Extraction of Cross Section [work in progress]

Polarization (Pe-,Pe+) = (-0.8, +0.3)

Summary and Plans

Precision measurement of light Higgsinos with small ΔM (10-20 GeV)

Motivated by both experiment (complementary to LHC) and theory (naturalness)

This study: Full ILD detector simulation, L=500 fb-1 at vs = 500 GeV, (Pe-, Pe+) = (-0.8,+0.3), (+0.8, -0.3)

- Analysis of neutralino mixed production $(\chi_1^0 \chi_2^0)$ and chargino pair production $(\chi_1^+ \chi_1^-)$
- Data selection yields good S/B ratio ; almost no background for chargino
- Fit kinematic edges to extract Higgsino masses
- Fit to overall distribution to extract production cross sections

Obtained preliminary results for some channels

- For neutralino: Edge precision 1.0 -1.5%, Cross section precision 3-5%
- Edge values generally consistent with theoretical values within uncertainty range
- For chargino : Cross section precision : 0.8%
- Still working on edge extraction : difficulties involving jet energy resolution
- Need to implement gamma gamma overlay bkg
- Other CM energies and polarizations: precise mass determination, input necessary for theoretical studies, etc...

results obtained in this study become input to SUSY parameter determination

To test GUT-scale physics and SUSY-breaking mechanism [S.-L. Lehtinen, in progress]

in progress

Thank you for listening

Additional Material

Extraction of Higgsino Mass [work in progress]

- The position of the kinematic edges of the dilepton energy (E_{II}) and invariant mass (M_{II}) are functions of CM energy and the two neutralino masses.
- The maximum values E_{II,max} and M_{II,max} are extracted by a fit to obtain the neutralino masses after correcting for detector/reconstruction effects`

Cuts have been designed so as not to destroy upper edge

- Use toy MC (generated from MC data fit) to evaluate statistical uncertainty
- Making progress in kinematic edge extraction

Edge extraction precision ~1 %

19

[S.-L. Lehtinen]

Fits of NUHM2 Parameters

All 6 parameters are simultaneously varied. Initial values are set to be near the model values.

Each blue point corresponds to a set of parameter values. The χ^2 value is computed for each point.

Using the χ_1^{0} , χ_2^{0} , χ_1^{\pm} masses and production cross sections, $M_{1/2}$ can be determined.

Adding Higgs mass and BR as measured at the ILC fixes μ and possibly constrains other parameters

In addition, if χ_3^0 can be observed in $\chi_2^0\chi_3^0$, tan β can be constrained as well. (ILC1)

Outlook

Test gaugino mass unification by fitting weak scale parameters M₁ and M₂

ILC1

Cross sections (pure beam polarizations) Vs=500 GeV with TDR beam parameters

(Pe- <i>,</i> Pe+)	(-1.0,+1.0)	(+1.0,-1.0)
σ(χ ₁ ⁺ χ ₁ ⁻) [fb]	1800	335
$\sigma(\chi_1^{0}\chi_2^{0})$ [fb]	491	379
σ(χ ₂ ⁰ χ ₃ ⁰) [fb]	11.0	8.42
σ(χ ₁ ⁰ χ ₁ ⁰) [fb]	2.03	1.56
σ(χ ₂ ⁰ χ ₂ ⁰) [fb]	0.53	0.41
σ(χ ₁ ⁰ χ ₃ ⁰) [fb]	0.28	0.20

Branching ratios

$BR(\chi_1^+ \to \chi_1^0 q q')$	67%
$BR(\chi_1^{+} \rightarrow \chi_1^{0} Iv) \ (I=e, \mu)$	22%
$BR(\chi_2^0 \to \chi_1^0 qq')$	58%
$BR(\chi_2^{\ 0} \rightarrow \chi_1^{\ 0} II) \ (I=e,\mu)$	7.4%

[S.-L. Lehtinen]

parameter	scale	ILC1
<i>m</i> 0	GUT	7025
$m_{1/2}$	GUT	568.3
A	GUT	-10426.6
tan eta	weak	10
μ	weak	115
m _A	weak	1000

• tan β constrained if we add χ_3^0 mass and $\chi_1^0 \chi_3^0$ production cross section

Cut table N1N2 , μμ (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
xsec	300.8	3.00E6	10566.2	2.68E6	261580	1065.2
N_gen	150395	1.50E9	5.28E6	1.34E9	1.31E8	532585
Lep_type nTrack=2	1974	9.1E8	444255	8.9E8	2.2E7	2426
BCAL veto	1950	6.0E6	149871	5.5E6	965354	2411
Pt_lep,1,2	1675	2.0E6	105721	1.4E6	295459	1986
cosθ_lep	1624	1.3E6	56001	910330	167734	1950
coplanarity	1407	48366	5272	3509	33067	22
Evis	1404	14325	2465	2248	4743	22
Emis, cosθmis	1393	1063	929	34	9	19
cosZ,Pt_ll, Minv	1393	545	429	34	9	19 23

Cut table C1C1, µtag (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
Xsec [fb]	1065.2	3.00E6	10566.2	2.68E6	261580	300.8
N_gen	532585	1.50E9	5.28E6	1.34E9	1.31E8	150395
nLep=1 BCAL veto	57983	1.5E9	443296	1.2E6	860530	1135
Ptmis	38240	2.7E6	377010	465397	519308	964
Jet_coplanarity	26085	1.5E6	86399	83683	109325	531
Jet_cosθ nTrack (per jet) > 1	14612	305870	3066	555	2234	22
cosθjet-lep Evis	14308	3753	791	100	41	0
Emis, cosθmis	14231	83	57	3	0	0
Pt_jj, M_jj	14173	51	31	3	0	0