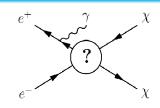
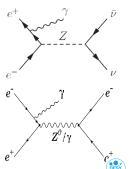
WIMP Search in the Mono-Photon Channel

Moritz Habermehl

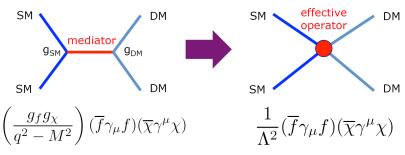
ILD Software / Analysis Meeting

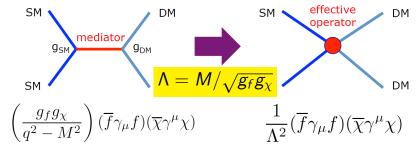
13 July 2016


WIMPs in the Mono-Photon Channel

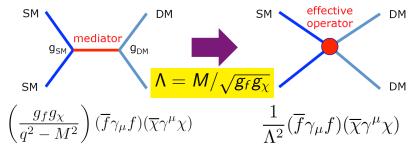

Signal

- WIMP pair production with a photon from initial state radiation $e^+e^- \to \chi \chi \gamma$
- quasi model-independent / general approach
- single photon in an "empty" detector
 → missing four-momentum
- observables: E_{γ} , θ_{γ}


- Neutrino pairs $e^+e^- \rightarrow \nu \bar{\nu} \gamma$
 - irreducible
 - but polarisation: switch on/off
- Bhabha scattering $e^+e^- \rightarrow e^+e^-\gamma$
 - if leptons are undetected
 - huge cross section ⇒ forward region

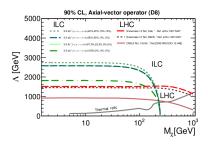

Effective Operators

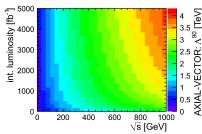
- assumption: new physics interaction is mediated by a heavy particle
- interaction can be integrated out


Effective Operators

- assumption: new physics interaction is mediated by a heavy particle
- interaction can be integrated out

Effective Operators


- assumption: new physics interaction is mediated by a heavy particle
- interaction can be integrated out



- validity
 - $M_{mediator} \gg \sqrt{s}$
 - pertubativity: g_f , $g_\chi \lesssim \sqrt{4\pi}$
 - ILC suitable for exclusion of allowed phase space

Some (Old) Results

BeamCalClusterReco: Overview

- Marlin processor BeamCalClusterReco by Andre Sailer and Andrei Sapronov
- four modes (to overlay background):

Pregenerated:

- random background samples are directly overlaid
- root files for single BX's

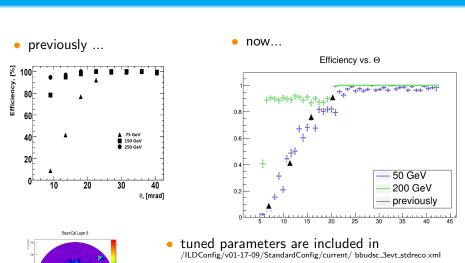
Average:

- calculate average and stdev in each pad,
- generate background accordingly
- input bg_aver...root \Rightarrow allows to compare to old setup
- Gaussian (in v01-17-08: called Parametrised)
 - same as Averaged
 - but with BeamCal_bg_E500-TDR_ws.root

Parametrised:

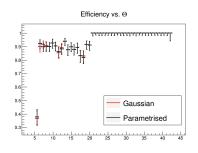
- parametrisation for each pad
- also: BeamCal_bg_E500-TDR_ws.root
 Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 13 July 2016

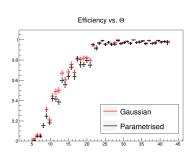
BeamCalClusterReco: Tuning of Parameters

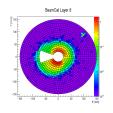

- Particle Gun sample: electrons, 50 GeV / 200 GeV
- after subtraction of pair background in each pad (average + $1\sigma)...$

BeamCalClusterReco: Tuning of Parameters

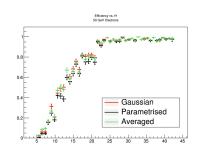
- Particle Gun sample: electrons, 50 GeV / 200 GeV
- after subtraction of pair background in each pad (average + $1\sigma)...$
- ... events have to fulfill the following to be considered as Bhabha event:
 - SigmaCut:
 - energy in pad: $2 \cdot \sigma$ above the average
 - ETPadMin: energy in pad has to be higher than 0.01
 - MinimumTowerSize: pads in 6 consecutive layers
 - StartLookingInLayer: first layers contain most overlay
 - ightarrow ignore them and start looking in layer 2

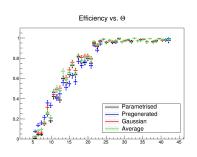


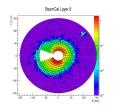

BeamCalClusterReco: Reconstruction Efficiencies



Parametrised vs. Gaussian vs. Averaged

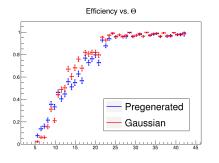


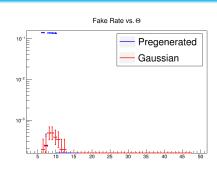




- "Parametrised" is most realistic approach
- efficiencies are very similar to "Gaussian" and "Average"
- small deviations in transition region
 ⇔ energy distribution not well descibed by Gaussian

Parametrised vs. Gaussian vs. Averaged





- "Parametrised" is most realistic approach
- efficiencies are very similar to "Gaussian" and "Average"
- small deviations in transition region
 ⇔ energy distribution not well descibed by Gaussian

Pregenerated

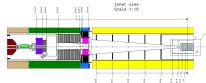
- huge fake rate (maybe correlations in neighbouring cells)
- Pregenerated Method Needs Further Testing

Event Selection I

- signal definition ($\chi\chi\gamma\to$ single photon plus missing energy)
 - $E_{\gamma} > 10 \text{ GeV}$
 - $E_{\gamma} <$ 220 GeV (Z return at 242 GeV: large background)
 - $|\cos \theta_{\gamma}| < 0.98$ (tracking needed for photon identification) \rightarrow Bhabhas: hard photon boosts leptons in detector
- transverse momentum: $p_T > 3$ GeV rejected
 - $\chi \chi \gamma$: no charged particles
 - allow for beam-induced background with low p_T
- empty detector: visible energy of >10 GeV rejected
- BeamCal cluster \rightarrow rejected
 - ullet old analysis: no reconstruction o tagging efficiency
 - ullet now BeamCalClusterReco: reconstruction o fakes are possible

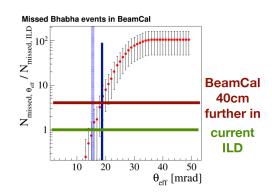
Event Selection II

- signal definition: 10 GeV $< E_{\gamma} <$ 220 GeV, $|\cos heta_{\gamma}| <$ 0.98
- transverse momentum: $p_T > 3$ GeV rejected
- empty detector: visible energy of >10 GeV rejected
- BeamCal cluster → rejected
- preliminary cut flow
 - small test samples
 - no low p_T overlay

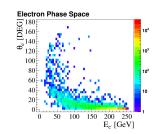

$ u u \gamma$	new sample	old analysis
p _T	99.3%	97.7%
E_{vis}	91.7%	91.6%
BeamCal	90.8%	89.8%
$e^+e^-\gamma$	new sample	old analysis
$e^+e^-\gamma$ p_T	new sample 26.1%	old analysis 21.1%
	•	•

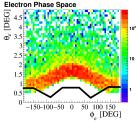
BeamCal and L* I

- How does the L* change request influence the Bhabha suppression ?
- How does the number of missed Bhabhas change if BeamCal is moved along the z axis?
 - ightarrow rough estimate
- idea: apply a hard theta cut: inside nothing is reconstructed, outside everything
- which θ_{eff} cut mimicks the BeamCal reconstruction ?
- ullet with $heta_{\it eff}=15.94$ the same rate is obtained as in full analysis



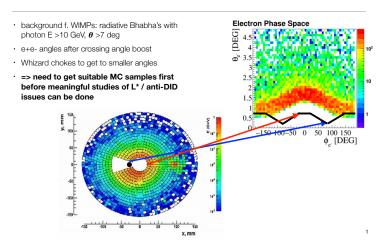
BeamCal and L* II


- assume purely geometrical dependence (i.e. ignore shape of Beamstrahlung pair cone)
- ullet grows when BeamCal is moved closer to IP
- ILD_o1_V05
 - $\theta_{eff,ILD} = 15.94 \text{ mrad}$
 - $z_{BCaI,ILD} = 3486 \text{ mm}$
- if BeamCal is moved in by 40 cm
 - $z_{BCal,L*} = 3086 \text{ mm}$
 - $\theta_{eff} = 18.01 \text{ mrad}$


approx. 3-4 times more Bhabhas are missed

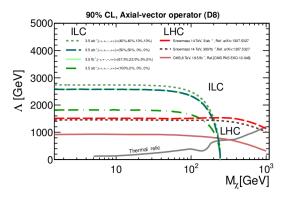
Bhabha phase space

- Bhabha samples used so far: Whizard (1) default cut:
 - invariant mass of all possible particles pairs > 4 GeV
 - o heta pprox 1 DEG (on MC level)
 - (ϕ dependence due to crossing angle boost)
 - BUT: (photon) signal definition translates to $\theta_{e,min} = 0.42$ DEG
- at low θ : some part of BeamCal phase space is not covered
- Whizard: cross section calculation diverges for $\theta \to 0$
- Bhabha: hard ISR photon very unlikely



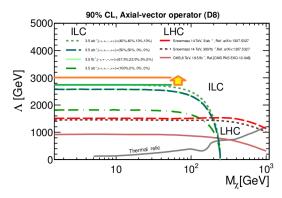
Jenny's Backup Silde from Santander

Bhabha veto in BeamCal



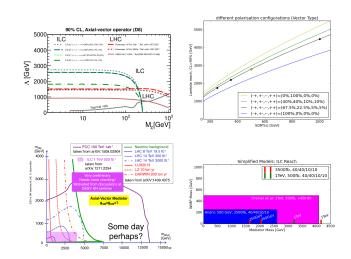
Summary: BeamCal and Bhabhas

- Bhabha background is significantly reduced using BeamCalClusterReco
- L*: moving BeamCal in results in loss of sensitivity for Bhabhas (no full simulation, only rough estimate)
- phase space of Bhabha samples cuts out forward region
 → trying to improve cuts in Whizard
- outlook: with TDR BeamCal and current Bhabha samples
 → expect WIMP sensitivity to increase

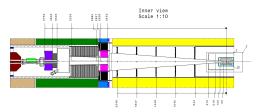

Outlook: Estimate of WIMP Sensitivity

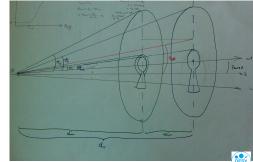
- improvement due to better Bhabha reconstruction
- plot shows estimate
- I'm producing new limits for ICHEP ...

Outlook: Estimate of WIMP Sensitivity


- improvement due to better Bhabha reconstruction
- plot shows estimate
- I'm producing new limits for ICHEP ...

additional material




Interpretation: Outlook: Simplified Models: Translating EFT Results into Simplified Models

BeamCal and L*: Discussion

- BeamCal is centered around outgoing beam pipe
- with a crossing angle of 14 mrad → centered around 7 mrad
- inner rim at 5 mrad (BeamCal coordinates)
 - \rightarrow 2 12 mrad in detector coordinates

