EMCal Optimization Studies for Test Beam and MC

Amanda Steinhebel, Jason Barkeloo, Jim Brau 22 September 2016 University of Oregon

EMCal

- Silicon-tungsten imaging calorimeter array
- Located before hadron calorimeter
- 30 alternating layers of tungsten alloy and silicon wafers
 - $\circ ~~1024~13~mm^2\, pixels/wafer$
 - Half-sized pixels near center of wafer
- KPiX microchip reads output of each pixel
 - Mounted at center of wafer

Image: Craig Gallagher

SLAC Test Beam

- Run in 2013
- 9 alternating layers silicon/tungsten alloy
- 12.1 GeV beam
- Can run W- or Si-first
- Simulated with Geant4

Test Beam Data Cleaning - Silicon first runs

Clean Out Contaminants without Energy Cut

- Want to remove contaminants without eliminating low energy electron events
- Found not all events deposited in all layers
 - \circ ~45% of events deposit in only one layer
 - \circ See slide 6 showing which layer has deposited energy for events that only deposit in one layer
 - $\circ~$ For Si-first test beams runs, beamline goes from layer $8 \rightarrow 0$
- Developed algorithm to categorize showers
 - Weiş & each deposit by layer number
 - Beamline: layer $1 \rightarrow 9$
 - L = layer
 - L = deposit energy
 - \circ ~ Insert 5x10e-14C (MIP) to any empty layer
 - \circ ~ See slide 7 for the statistics and cut

$$\frac{\sum_{d} L_{d}^{2} \mathcal{E}_{d}}{\sum_{d} \mathcal{E}_{d}}$$

Test Beam Data Cleaning

Geant4 MC Optimization

- 8000 single-electron events aimed at center of wafer
- Gaussian smear and shift off center
- Poisson distribution for up to 5-electron events
- Randomly remove 10% of pixels from each layer to account for inactive pixels
- Done to model test beam data

Total Deposited Charge per Electron Event

MC Total Energy from Multiple Electron Distribution

Electron Events

10

Geant4 Single Electron Distribution

- Single electron events have a Gaussian distribution
 - $\circ \quad \sigma = 15.37 + -0.13$
 - $\circ \quad {\rm E_0} = 48.44 + -0.18$
- Simulation underestimates spread of distribution - may need to broaden Geant4

Fitting Function

- Need to optimize three parameters
 - \circ Scaling *a* (should be identical for both orientations)
 - \circ Electron Poisson distribution < n >
 - \circ ~ Difference in spread of simulated vs experimental single electron spectrum σ
 - $\bullet \quad \text{experimental RMS} > \text{simulated RMS}$
- Fitting function:

$$D(E) = \sum_{n=1}^{\infty} P(n, \langle n \rangle) \mathcal{E} \Big(E, an E_0, a^2 n (\sigma_{MC}^2 + \sigma^2) \Big)$$
$$P(n, \langle n \rangle) = \frac{\langle n \rangle^n e^{-\langle n \rangle}}{n! \left(1 - e^{-\langle n \rangle} \right)}$$

Experiment Agrees with Simulation

Sensor Energy Deposits - Loyer 4 (1-vil), weighted layer 3 with 5 min deposit, cut above 44, vill empty layers (critie-14 C)

Sensor Energy Deposits - Lager 7 (1-vil), weighted layer 2 with 5 min deposit, cut above 44, vill empty layers (ville-14 C)

Sensor Energy Departs - Loyer 2 (1 vii), weighted layer 2 with 5 min departs, cut above 44, viii empty layers (x18e-14 C)

Sensor Energy Departs - Loger 2 (1-28), weighted layer 2 with 5 min departs, cut show 44, v8 empty layers (x18e-14 C)

Senesr Energy Departs - Layer & (1-vil), weighted layer '2 with 5 min departs, cut shoer 44, vill empty layers (chile-14 D)

Sensor Energy Deposito - unper 9 (1-vii), weighted layer '2 with 5 min deposit, cut shows 44, viii empty layers (vibe-14 C)

Electron Counting Efficiency

- Want to use full ILC for precise measurements
 - Ex: Higgs mass, Higgs branching ratios Ο
- Higgstralung decay \Rightarrow two close photons
 - Want to be able to distinguish 0
- Use current detector setup to identify nearby showers
 - Previous algorithm = $\sim 88\%$ correct at counting electrons Ο
 - Especially interested in 2-electron events Ο

New Counting Algorithm

- Import files
 - \circ Neighbor geometry of silicon wafer
 - Energy deposits (9 layers of 1024 pixels)
 - $\circ \quad \ \ {\rm True \ electron \ number \ per \ event}$
- Collect local maxima of deposits for each layer
- Require same pixel to be a local maxima >3 layers
 - \circ Biases against late forming showers

Counting Improvements

- Assisted by Nick Romig (summer high school student)
- Updated neighbor files in central region
- Disallowed maxima in neighboring pixels
- Still shortcomings
 - Biased against late-developing showers
 - No advantage to high granularity center for test beam

Image: Craig Gallagher

Current Algorithm Counts More Accurately

18

2-Electron Separation Counting

Correct count - 2-electron events

Separation-Correct

Electron Events -Simulation Truth

Electron Events -Simulation Tagged

Simulation Tagging Results

		TAGGED					
		0	1	2	3	4	5
TRUTH	1	0.20%	99.80%	0.00%	0.00%	0.00%	0.00%
	2	0.10%	17.20%	<mark>82.60%</mark>	0.10%	0.00%	0.00%
	3	0.00%	5.40%	36.40%	<mark>58.00%</mark>	0.20%	0.00%
	4	0.00%	0.90%	16.70%	48.90%	33.00%	0.50%
	5	0.00%	0.00%	7.90%	42.10%	36.80%	13.20%

Future Work

- $87\% \rightarrow 95\%$ efficient at counting
- Improve algorithm further to eliminate bias against late showers
- Test algorithm with Higgs decay physics events
 - Familiarize with grid
 - \circ Use yesterday's simulation tutorial

Questions?