

DRAFT of DRAFT: Accelerator Physics Technical System Group Review

For Vancouver GDE meeting 2006 Kiyoshi Kubo KEK

1

Status of Accelerator Physics Group (1)

- Which 'Area' we have, covered: LET (Low Emittance Transport), so far.
 – From DR exit to IP (and to Dump)
 - RTML
 - Main Linac
 - BDS
 - Sources (Except for the undulator section for e+ production), Damping Ring
 - No activity in our group. Area Group coordinates all works.

İİL

Status of Accelerator Physics Group (2)

RTML

IIL

- Lattice design completed
- Tuning studies has not been done much
 - Worm sections (turnaround, BC wigglers, etc.)
 - Simple 1-to-1 correction will not be satisfactory
 - SCRF in BC1 and BC2
 - Similar to main linac, but,
 - Large $\sigma_{\rm E}/{\rm E}$ --> large dispersive effect
 - Large off crest phase --> tight tolerances
 - Tuning for Longitudinal phase space not studied much
- Dynamic issues
 - RF phase stability tolerances were estimated
 - Need studies on
 - Design and performance of ·feed-forward (turnaround)
 - Design and performance of ·feed-back (Transverse and longitudinal)
 - Some integration with downstream area will be necessary. (has not done yet.)
- Need to give more manpower to this area (?)

Status of Accelerator Physics Group (3)

Main Linac

İİL

- Lattice design for performance study completed
 - Undulator section lattice exists.
 - Other warm sections ? Not yet ?
- Code benchmarking shows good agreements
- Static tuning studies has been (relatively) well done.
 - Especially DFS (Dispersion Free Steering)
 - Promising results from many people and many codes
 - But not very much for other, or additional, steering methods
 - Bump tuning has been also shown to be effective.
 - Present status is probably fine for RDR stage
- Dynamic studies
 - Stability tolerances (vibrations, RF) are being studied.
 - Some results but not enough
 - Performance study of feedback have not been done.
- Manpower should go from static issues to dynamic issues or to other areas (?)

Status of Accelerator Physics Group (4)

BDS

İİİ

- Area Group coordinate most works
- Lattice design completed
- Alignment and tuning
 - The old algorithm, which was good for 1 seed, turned out not to be good.
 - New algorithms are being tried.
 - Without dynamic errors, so far
- Intra-train feedback
 - Post Linac Fast Feedback
 - IP Angle Feedback. Based on BPM in BDS before IP
 - IP Position Feedback. Based on BPM after collision (beambeam kick)
 - Luminosity feedback. Position-Angle scan. Maximize Luminosity per collision
 - Simulation Result, including Linac, BDS and IP, is promising.
- Inter-train feedback
 - 1-to-1 steering is foreseen. No simulations yet

LET integrated study: from DR exit to IP and extraction

• Some ideas for total integrated study. But no actual study and simulations yet.

Non-LET area (Sources and DR)

- No activities in our group
 - Except Undulator section for e+ production in e- main linac.

- Possible cost reduction by the Valencia workshop:
 - -None

Plans and Goals-1 Accelerator Physics

Plans and goals of this workshop (or soon later)

- Review status. Then,
- Agree to move static tuning to dynamic studies for Main Linac. (if it is appropriate. Static tuning studies in RTML and BDS have still high priority.)
- Agree on conceptual feedback design.
- Review realistic errors, or standard of errors. (Static and Dynamic)
- Discuss 'integrated' simulations, and agree on what is the realistic and effective way.
- Review and re-define tasks and a coordinator of each task.
- Agree on communication method (Web pages,

Plans and Goals-2 Accelerator Physics

Plans between this and the Valencia workshop

- Complete missing part of lattice design (matching between areas).
- Simulations for static tuning
 - Mostly in RTML and BDS
- Simulations for dynamic errors.
 - RTML, Main Linac and BDS, basically separately.
 - Establish feedback system design from DR exit to IP, and simulate its performance.
- Start Integrated simulations.
 - Simple ones, e.g.: Using bunch compressor for alignment of main linac.
 - Start total integrated study
- Give refined numbers of tolerances and specs.
 - alignment, vibrations, strength stabilities, BPM resolution, etc..
- Start working for injector part (before DR)?????

Global Design Effort

Towards the TDR Accelerator Physics

Integrated studies of LET

- Need more computer power
 Beam dynamics in Source Areas
 Need iterations of
- Hardware engineering and
- Performance study