Measurability of Anomalous ttH Couplings at the ILC 1.

Analysis procedure is similar with our VVH analysis.

KEK/SOKENDAI

Motivation.

- >. The top quark is the heaviest particle in the SM.
- >. Its Yukawa coupling to the Higgs is also the strongest and has a important role.
 - >. Some deviations might appear in this ttH coupling.
 - >. Direct measurement using ttH vertex with ILC.
 - >. The ttH coupling with CP-mixed Higgs CP phase are parametrized;

$$g_{\Phi tt} = -i\frac{e}{s_W}\frac{m_t}{2M_W}((1+a) + ib\gamma_5)) \qquad \phi_{CP} \equiv \arctan(b/a + 1)$$

- >. a and b are independent.
- >. In the SM coefficients are given by a=0, b=0.
- >. A pure pseudo-scalar coupling is given by a=-1, $b\neq 0$.
- >. A mixed state of a Higgs is given by $a\neq-1$, $b\neq0$.
- Angular observables exhibit a clear difference between the scalar and pseudo-scalar processes.
- >. Exploiting angular/spin correlation and polarization of a top pair is useful to extract CP information.

Momentum/Angular Distributions.

Momentum/Angular Distributions.

Angular Distributions: ttH \rightarrow 4qlv+bb.

- >. The top spin info. is translated to the dists. of the decay products and it is not polluted by the effects of strong interaction.
 - >. Lepton angular dists. in the decay of top is not affected by any non-SM effects in the decay vertex.

Pseudo-scalar: ECM vs Total $\sigma(ee \rightarrow ttH)$

> Power of kinematical information for anomalous couplings.

>. Construct momentum/angular distributions.

X(physsim)selection effiratio of A@500GeV: σ tth ~ 0.4(SM) *1000(L) * 20% = 80 * 1.5%(b=1) ~ 1 \rightarrow useless@550GeV: σ tth ~ 2.0(SM) *1000(L) * 20% = 400 * 4 %(b=1) ~ 16@600GeV: σ tth ~ 4.0(SM) *1000(L) * 20% = 800 * 6 %(b=1) ~ 48 \rightarrow possible?@ 1 TeV: σ tth ~ 6.0(SM) *1000(L) * 20% = 1200* 15 %(b=1) ~ 180 \rightarrow possible

* @500GeV nominal σ (whizard) LR ~ 0.809

Rough Estimation At 500GeV.

CP-violating interaction contributes to the electric dipole moment (EDM). Any EDM constraints are not imposed here.

>. No information on momentum/angular distributions.

- >. Distributions can not be available due to lack of events & low contamination of A.
- >. Information we can rely on is only Xsec probably.
 - >. Estimate sensitivity roughly

for anomalous parameters in the a-b plane.

$$\Delta \chi^2 = \left[\frac{N^{SM} \cdot \epsilon - N^{BSM} \cdot \epsilon}{\delta \sigma \cdot N^{SM} \cdot \epsilon}\right]^2$$

>. σ_{tth} (LR/RL) = 0.809. / 0.340. >. NSM, N^{BSM} is calculated analytically.

$$\sigma_{tth} = (1+a)^2 \cdot \sigma_{tth}^{SM} + b^2 \cdot \sigma_{tth}^{Pseudo} + (1+a)b \cdot \sigma_{tth}^{Inter}$$

>. $\delta \sigma_{tth} \sim 10\%$ (with 500fb-1) >. $\epsilon \sim 20\%$ (selection efficiency)

Rough Estimation At 600GeV.

>. My interest 600GeV. But no official samples.

>. What I can do is to assume reasonably and estimate it roughly.

>. At 600 GeV pseudo-scalar component could be relatively large.

- >. Angular dist. will be observed because remaining events will be much.
 - >. σ_{tth} (LR/RL) = 3.84./1.51 (Physsim), (which are 5 times better than that of 500.)
 - >. $\delta\sigma_{tth} \sim 10\%$ (@500GeVwith 500fb-1) / **Sqrt(5)**.
 - >. ϵ ~ 20% (selection efficiency for N).

 $N_{\text{remaining}} = \sigma_{\text{tth (h->bb)}} 2.30 \text{ (eL0.8pR0.3)} * 1000(L) * 0.2 \text{ (}\epsilon\text{)}$ $\sim 450 \text{ (180+180+90)}$

- >. Angular dist. is divided into 8 bins. (3*3 for 2d)
- >. Acceptance for angular info. is 20% for each bin.
- >. Bkgs on each bin are asuumed to be 10 time more.
- >. NErr on each bin is estimated by $\sqrt{(S+B)}$.

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^n \left[\frac{N^{SM}(x_{ij}) \cdot f_{ij} - N^{BSM}(x_{ij}; a, b) \cdot f_{ij}}{\delta N^{SM}(x_{ij})} \right]^2 + \left[\frac{N^{SM} \cdot \epsilon - N^{BSM} \cdot \epsilon}{\delta \sigma \cdot N^{SM} \cdot \epsilon} \right]^2$$

Rough Estimation At 600GeV.

р

-2

-3

-0.3 -0.2 -0.1 0

20

18

16

14

12

10

8

6

0.1

а

>. Only 1 angular info. is used (Ph).

>. 2d info. is used.(Ph,cosθ).

(Ph,ΔΦ).

ArcTan(1.2/0.95) ~ 0.90 CP-phase Φcp: ~ 0.29π

a=1-0.015, b=0.5 ArcTan(0.5/0.985) ~ 0.47 CP-phase Φcp: ~ 0.15π

Move on 1TeV.

Ecm = 1TeV.

>. Sigs.

>. ttH \rightarrow 4qlv+bb / 6q+bb / 2q2l2v+bb >. σ_{tth} (LR/RL) = 5.89697. / 2.65115. >. Beam (Pe⁻,Pe⁺)=(-0.8,+0.3). >. L=1000fb⁻¹

>. Bkgs.

- >. Interfering BGs (same final state: ttbb).
 - EW : ttZ -> ttbb
 - QCD: ttg -> ttbb (g->bb: dominant)

>. Non-interfering BGs (but, huge cross sections).

- ttbar

(Hard gluon emission from bottom quarks.)

(Fraction of mis-reconstruction and/or failure of b-tag lead to significant BGs)

@ 1 TeV information http://www-jlc.kek.jp/~miyamoto/CDS/mc-dbd.log/generated/1000-B1b_ws/tth/

Ecm = 1TeV.

>. Reconstruction chain.

```
<processor name="myRootFileProcessor"/>
<processor name="myTauJetFinder"/>
<processor name="myIsoLepExtractor"/>
<processor name="MyFastJetProcessor"/>
<processor name="MyUndoJetProcessor"/>
```

(suehara's tau finding)
(old method with measured E)
(for removal of yy overlay)

```
<processor name="MyVertexFinder"/>
        <processor name="MyJetClusteringAndFlavorTag_6Jets"/> or
        <processor name="MyJetClusteringAndFlavorTag_8Jets"/> or
        <processor name="MyJetClusteringAndFlavorTag_4Jets"/>
<processor name="MyThrustReconstruction"/>
<processor name="MySphericityProcessor"/>
<processor name="myTTHAnalyzer"/>
```

>. #lsoLeptons.

>. I did not optimize carefully this time, there is still room for improvement of results.

Event Selection.

- >. Strong information to distinguish anomalous couplings is angular dists.
 → No angular cut.
- >. Momentum is also useful info. to distinguish it
 - → Correlated observables with it should not be used.

>. What we can use is event topology.

- Cut region is determined by a scan so as to maximize signal significance.
 - >. Significance (ttH \rightarrow 4qlv+bb) : S/ $\sqrt{(S + B)}$ = 4.84 effi: 19.84
 - >. Significance (ttH \rightarrow 6q +bb) : S/ $\sqrt{(S + B)}$ = 5.79 effi: 22.21
 - >. Significance (ttH \rightarrow 2q2l2v+bb) : S/ $\sqrt{(S + B)}$ = 2.71 effi: 17.59

arXiv:1409.7157v4 The selection efficiencies for T. Price^{a,1}, P. Roloff^{b,2}, J. Strube^{c,3,5}, T. Tanabe^{d,4} signal events are 33.1% (6jet

signal events are 33.1% (6jets) and 56.0% (8jets)

Correlation between Phiggs vs observables.

Overall Acceptance: *f*.

>. Need to get acceptance.

$$\chi^2 = \sum_{i=1}^n \left[\frac{N^{SM}(x_i) \cdot f_i - N^{BSM}(x_i; a, b) \cdot f_i}{\delta N^{SM}(x_i)} \right]^2$$

1d

$$\begin{split} N^{Reco}(x_{j}^{Reco}) &= \sum_{i} f(x_{j}^{Reco}, x_{i}^{Gene}) \cdot N^{Gene}(x_{i}^{Gene}) \\ &= \sum_{i} f_{ji} \cdot N_{i}^{Gene} \\ &= \sum_{i} \bar{f}_{ji} \cdot \eta_{i} \cdot N_{i}^{Gene} \\ \eta_{i} &\equiv \frac{N_{i}^{Accept}}{N_{i}^{Gene}} \text{ (Event acceptance.)} \\ &\bar{f}_{ji} &\equiv \frac{N_{ji}^{Accept}}{N_{i}^{Accept}} \text{ (Detector responce function.)} \end{split}$$

2d

$$N^{Reco}(x_{j\beta}^{Reco}) = \sum_{i} \sum_{\alpha} \bar{f}_{j\beta i\alpha} \cdot \eta_{i\alpha} \cdot N_{i\alpha}^{Gene}$$
$$\eta_{i\alpha} \equiv \frac{N_{i\alpha}^{Accept}}{N_{i\alpha}^{Gene}} \text{ (Event acceptance.)}$$
$$\bar{f}_{j\beta i\alpha} \equiv \frac{N_{j\beta i\alpha}^{Accept}}{N_{i\alpha}^{Accept}} \text{ (Detector responce function.)}$$

Error of #N on Each Bin: δN .

Dists. on Bkgs, Sig, Event/Overall Acceptance.

Sensitivity to Anomalous Parameters.

- >. Contour plots on sensitivity for anomalous parameters in the a-b plane.
 - >. Process is **ttH** \rightarrow **4qlv+bb** and assumed L is 1000fb-1.
 - >. Use only momentum/angular distributions.

Sensitivity to Anomalous Parameters.

- >. Contour plots on sensitivity for anomalous parameters in the a-b plane.
 - >. Process is **ttH** \rightarrow **4qlv+bb** and assumed L is 1000fb-1.
 - >. Use only momentum/angular distributions. + Cross section effect.

>. Excluded Region on Φ_{cp} $f(Phiggs) + \sigma$

 $\phi_{CP} \equiv \arctan(b/a+1)$

Excluded Region on \Phi_{cp}

- >. Contour plots on sensitivity for anomalous parameters in the a-b plane.
 - >. Each process on ttH and assumed L is 1000fb-1.
 - >. Use the only higgs momentum distribution. + Cross section effect.

Excluded Region on Φ_{cp}: Combined

- >. Contour plots on sensitivity for anomalous parameters in the a-b plane.
 - >. Each process on ttH and assumed L is 1000fb-1.
 - >. Use the only higgs momentum distribution. + Cross section effect.

>. $\Phi cp > 0.29\pi$ is excluded using the only one distribution.

- >. If MELA is applied, sensitivity will much better because all dist. is calculated based on mom.
- >. 600GeV might has similar sensitivity.

ATLAS Studies on Anomalous ttH.

>. arXiv:1406.1961v2

Conclusion

4

$$\mathcal{L} \supset -\frac{y_t}{\sqrt{2}} \overline{t} (\cos \xi + i\gamma^5 \sin \xi) th,$$

Figure 2. The Higgs data constraints on the anomalous couplings C_S and C_P at the LHC and the expected sensitivity of these couplings at 240 GeV TLEP. The solid and dashed lines correspond to 68% and 95% C.L. respectively. The shadowed region represents the expected measurement uncertainty at HL-LHC.

In this paper, we have obtained constraints on the CP-violating top-Higgs couplings using the current Higgs data and found that values of CP-violating phase $|\xi| > 0.6\pi$ are already excluded at 95% C.L.. We expected TLEP to improve this exclusion region to $|\xi| > 0.07\pi$.

>. arXiv:1606.03107v2 (MELA)

Φcp > ~0.18π(my case)

where the f_{CP} parameter is conveniently bounded between 0 and 1, is uniquely defined, and can be interpreted as the cross section fraction corresponding to the pseudoscalar coupling, and therefore is directly related to experimentally observable effects. It is a convenient counterpart of the f_{a3} parameter defined for the HVV couplings [3, 5, 62]. While

Summary.

- >. Based on classical method, anom couplings on ttH was studied.
- >. Any angular distribution can not be constructed @500GeV because of ...
- >. Angular/Momentum dists. @1TeV are very useful.
 - and $\Phi cp > \sim 0.18\pi$ is excluded if we use 2d/1d dimensional dists for all modes.
- >. However #N are not many, 2d/1d are limits.
- >. MELA(multi dimensional analysis) is the best way for CP of ttH.
- >. 600GeV might have similar power with 1TeV.

Plan.

- >. IsoLep finding should be improved.
- >. Go back to VVH analysis. We decided a plan of analysis for MELA.
- >. Come back later.

ttH→4qlv+bb

								cut: cut: cut: cut: cut: cut: cut: cut:	1 2 3 4 5 6 7 8 9 10 11	nisoleptons nvtx2nds visenergy maxbtag_higgs maxbtag_bbar allpfos logy45 logy56 printhrust btagsum_higgs higgsmass		ons ids igy igs oar ids id5 ist iggs iass	0.500 - 1.500 3.500 - 9999.000 580.000 - 900.000 0.505 - 1.100 0.638 - 1.100 153.500 - 256.500 3.500 - 5.610 4.060 - 8.320 0.566 - 0.866 0.980 - 1000.000 105.000 - 147.000					
# Cut Table Sum	nary																	
# cut&process	lv4qbblv	4qnonbb	6qbb	6qnonbb	212nbbbb21	2nbbnonbb	ttz	ttbb	yyvæv	yyvelv	yyveyx	yyvlev	yyvllv	yyvlyx	yyxyev	yyxylv	yyuyyc	уусуу
# raw data	6481	9992	6592	11478	1194	996	26899	7164	24141	32711	188053	32710	52336	207966	188052	207952	188050	188048
# used data	6481	9992	6592	11478	1194	996	26899	7164	24141	32711	188053	32710	52336	207966	188052	207952	188050	188048
# passed data	1286	336	228	246	24	0	617	330	2	5	649	4	10	659	670	711	262	338
# passed/used	19.843	3.363	3.459	2.143	2.010	0.000	2.294	4.606	0.008	0.015	0.345	0.012	0.019	0.317	0.356	0.342	0.139	0.180
#xsection	0.895	0.656	0.934	0.685	0.215	0.157	8.355	2.059	8.742	14.054	41.458	13.694	24.587	69.153	40.997	69.416	50.443	50.351
# xsection#L	895	656	934	685	215	157	8355	2059	8742	14054	41458	13694	24587	69153	40997	69416	50443	<u>50351</u>
misoleptons=1	76.04	63.18	16.63	34.58	49.58	46.49	45.14	46.02	43.29	47.78	80.50	47.58	49.94	72.82	80.41	72.73	16.04	16.13
HNVTX2nds	63.45	21.95	13.73	12.83	40.79	12.85	16.16	35.52	4.65	6.75	16.07	6.56	7.90	15.49	16.17	15.30	3.82	3.84
wisenergy	54.36	17.48	9.38	9.98	17.42	5.12	11.73	25.40	1.10	1.66	11.09	1.48	2.05	10.80	11.15	10.62	2.35	2.39
maxbtag_higgs	50.29	12.26	7.96	7.58	15.91	4.62	9.57	22.60	0.91	1.38	9.12	1.20	1.72	8.88	9.20	8.71	1.85	1.88
maxbtag_bbar	45.29	9.21	6.90	5.14	13.57	3.21	7.47	18.90	0.41	0.62	5.29	0.55	0.77	5.02	5.32	5.00	1.12	1.18
Hallpfos	34.47	7.14	6.22	4.09	6.78	1.00	5.18	13.09	0.10	0.13	2.06	0.14	0.21	1.92	2.10	1.88	0.70	0.76
+logy45	25.01	5.07	5.40	3.44	2.68	0.20	3.54	7.20	0.01	0.03	0.65	0.03	0.04	0.60	0.65	0.60	0. 37	0.40
+logy56	24.47	5.07	5.39	3.44	2.43	0.20	3.46	6.95	0.01	0.03	0.59	0.03	0.04	0.55	0.60	0.55	0.35	0.39
printhrust	22.96	4.71	5.19	3.29	2.18	0.20	3.19	6.18	0.01	0.02	0.46	0.02	0.03	0.42	0.46	0.44	0.21	0.25
Hotagsum_higgs	21.51	3.73	4.63	2.65	2.09	0.20	2.70	5.44	0.01	0.02	0.40	0.02	0.03	0.35	0.39	0.38	0.17	0.21
higgsmass	19.84	3.36	3.46	2.14	2.01	0.00	2.29	4.61	0.01	0.02	0.35	0.01	0.02	0.32	0.36	0.34	0.14	0.18
# Evts(Remain)	180.2	20.6	34.6	15.4	4.6	0.0	203.5	96.5	1.2	1.8	126.7	1.2	3.8	200.1	127.5	208.9	71.3	90.0

>. Significance: $S/\sqrt{(S + B)} = 4.84$

The selection efficiencies (purities) for signal events are 33.1% (27.7%) and 56.0% (25.2%) for the six- and eight- jets analyses in ILD, respectively,

ttH→4qlv+bb

ttH-		<pre>cut: 1 cut: 2 cut: 3 cut: 4 cut: 5 cut: 6 cut: 7 cut: 8 cut: 9 cut: 10 cut: 11 cut: 12 cut: 13 cut: 14 cut: 15</pre>		nisoleptons nvtx2nds visenergy maxbtag_higgs maxbtag_bbar allpfos minpfoinjets maxpfoinjets logy45 logy56 logy67 logy78 logy89 btagsum_higgs higgsmass			-0.50 3.50 560.00 0.52 0.67 189.00 0.00 29.70 3.13 3.8 4.8 5.0 6.2 0.8 105.0	$0 - 999 \\ 0 - 999 \\ 0 - 110 \\ 8 - 33 \\ 0 - 33 $	0.500 9.000 0.000 1.100 1.00 6.000 4.167 5.205 6.816 8.086 9.830 9.830 00.000 50.000	101								
# Cut Table Sum	mary							cuc				51110 5 5	10510					
# cut&process	6qbb	6qnonbb	lv4qbblv	/4qnonbb 2	212nbbbb27	12nbbnonbb	ttz	ttbb	yyvæv	yyvelv	/ yyvey>	yyvlev	yyvll	v yyvly	x yyxyev	/ yyxyl\	/ yyuyyo	c yycyyu
# raw data	6592	11478	6481	9992	1194	996	26899	7164	24141	32711	150244	32710	52336	170153	150243	170142	150242	150240
# used data	6592	11478	6481	9992	1194	996	26899	7164	24141	32711	150244	32710	52336	170153	150243	170142	150242	150240
# passed data	1464	595	291	110	3	2	/53	469	0	0	69	1	5	119	82	115	882	967
# passed/used	22.209	5.184	4.490	1.101	0.251	0.201	2./99	6.54/	0.000	0.000	0.046	0.003	0.010	0.0/0	0.055	0.068	0.58/	0.644
# xsection	0.934	0.685	0.895	0.656	0.215	0.15/	8.355	2.059	8.742	14.054	41.458	13.694	24.58/	69.153	40.997	69.416	50.443	50.351
# xsection#L	934	685	895	656	215	15/	8355	2059	8/42	14054	41458	13694	24587	69153	40997	69416	50443	50351
SUCSESS:	99.9/	99.92	99 . 89	99.95 70.20	100.00	100.00	99.95	99 . 93	99.98	99 . 96	99 . 9/	99.98 71.00	99 . 99	99 . 98	99 . 98	99 . 99	99 . 99	99 . 99 ≓
+n1soleptons	90.61 70.14	84.2/	// . 49	/3.28	6/.09	16 47	83.20	82.00	0/103	/1.00	/8.5/ 15.22	/1.38	/4.12 11.10	81.0/	/8.03	81.69	91.52 27.12	91.53 =
+nvtx2nas	/8.14 77.70	35.01	64.8/	25.20	54.02	10.4/	32.53	64./8	1.07	9./0	15.33	9.40 2.15	2.02	14.50	15.51	18.44	2/12	2/.23 =
+V1senergy	//./3	34./3	59.2/	20.54	25.03	/.03	28.04	5/109	1.12	2.2/ 1.55	11.01	2.15	3.02 2.11	14.5/	11./4	14.50	20.58	20./0 ≓
+maxotag_n1ggs	6/.04	23.11 12.45	51.80	14.39	23.03	5.42		48.00		1.55	8.90	1.49	2.11	2 2 11•10	8.9/	10.95	18.33	18.45 =
	51.93	12.45	33.01 12.27	0.14 2.01	8.03	1.51		31.30 10.00		0.24	1.09	0.23	0.55	Z.Z	1.09	Z.20	1C1/	/∎01 =
+aluptos	40.22	9.30	12.2/ 12.27	3.01 2.01	1.70 1.70	0.00	0.23	16.90	0.01	0.03	Ø.33 0.33	0.02	0.05	0.45 0.45	0.34	0.44 0.44	3.02	3.1/ = 2.17 →
+Impionjets	40.20	9.30	12.2/	3.01 2.01	1.70 1.76	0.00	6.23	10.09	0.01	0.03	0,33	0.02	0.0E	0.45 0.45	0.34 0.34	0.44	3.0Z	3∎1/ = 2 15 -
	40.02	9.24 6.05	12.24	3.01 1.70	1./0 0.04	0100	0.21	10.03	0.01	0.00	0.00	0.02	0.01	0.45 0.14	0.34 0.10	0.44 0.12	3.01	- 1 <i>0</i> 0 →
+LUGY45	29.40 20.22	0.00 6.70	/∎34 6.4⊑	1./Z	0.04 0.05	0.30	4.04	9.0/	0.00	0.00	0.07	0.01	0.01	0.14 0.10	0.00	0.10	0.99	
	20,23	0.70	0.40 5.60	1.00	0,25 0,25	0.20	3.02	0.3/ 7.01	0.00	0.00	0.06	0.00	0.01	0.00	0.07	0.00	0.76	
+1000/	2/ <u>.</u> 20	0.00	5∎00 E 40	1.4Z	0.25 0.25	0.20	3.03	7.91 7.00	0.00	0.00	00.00	0.00	0.01	0.09	0.07	0.09	0.75	
+1009/8	2/103	0.03 6.00	5∎49 4 07	1.39	0.25 0.25	0.20	3.00	/.82 7.7	0.00	0.00	0.0E	0.00	0.01	0.00	0.0	0.09	0.70	0.75 -
+Wyyoy	20102	ט י י ביד ב	4•9/ 171	1 70	0∎Z⊃ ∩ ⊃⊑	0120 020	2 10	7.43 7.16	00.00	00.00	0.0E	0010	0 01	0010 70 0	0010	0010 700	U. /U 0 65	רניש = ה_ חר ח
	24.09 22 21	5∎/5 ⊑ 10	4∎/⊥ / /0	1 10	0∎Z⊃ ∩ ⊃⊑	0120 020	00 C	6 55 10	00.00	00.00	0 0E	0010	0_01	ע∎ש דיט וי	00.0E	וש∎ש דם ה	0 EO	שושע = ה הו →
TILLYYSIICSS # Futc(Domain)	22•21 217 G	o⊐c ot∎C	4•49 27 0	0 T	0 E	0,20 0,2	2:00	120 0		00.0	لال ا ياں 10 1	00100	10 1 0	₩₩ 10 C	CUIU 20 1	101U 101	2010 2010	ד 40∎ש 210 0
# LVLS(17131113111)	21/10	2010	0,10	7.0	0.5	CID	234.9	⊥∠O∎U	0.0	0.0	10•1	0.0	1.9	49.0	2014	40./	293.3	273"3

>. Significance: $S/\sqrt{(S + B)} = 5.79$

•

$ttH \rightarrow 2q2l2v+bb$

# Cut Table Sur	mary																	
# cut&process	212nbbbb21	2nbbnonbb	lv4qbb	olv4qnonbb	6qbb	6qnonbb	ttz	ttbb	yyveev	yyvelv	yyveyx	yyvlev	yyvllv	yyvlyx	yyxyev	yyxylv	yyuyyc	yycy
# raw data	1194	996	6481	9992	6592	11478	26899	7164	24141	32711	150244	32710	52336	170153	150243	170142	150242	15024
# used data	1194	996	6481	9992	6592	11478	26899	7164	24141	32711	150244	32710	52336	170153	150243	170142	150242	15024
# passed data	210	3	61	11	1	2	82	50	28	29	30	25	50	20	16	20	1	(
# passed/used	17.588	0.301	0.941	0.110	0.015	0.017	0.305	0.698	0.116	0.089	0.020	0.076	0.096	0.012	0.011	0.012	0.001	0.00
# xsection	0.215	0.157	0.895	0.656	0.934	0.685	8.355	2.059	8.742	14.054	41.458	13.694	24.587	69.153	40.997	69.416	50.443	50.352
# xsection*L	215	157	895	656	934	685	8355	2059	8742	14054	41458	13694	24587	69153	40997	69416	50443	50351
SUCSESS:	60.89	44.78	11.93	25.27	1.53	12.44	14.90	12.23	69.48	61.02	11.50	61.21	54.34	10.22	11.49	10.34	1.51	1.4
+nisoleptons	60.89	44.78	11.93	25.27	1.53	12.44	14.90	12.23	69.48	61.02	11.50	61.21	54.34	10.22	11.49	10.34	1.51	1.4
+nvtx2nds	50.59	12.65	9.09	7.45	1.24	4.06	4.44	8.58	8.41	7.98	1.71	7.91	7.11	1.62	1.69	1.62	0.29	0.3
+visenergy	50.59	12.65	8.69	7.21	0.90	3.62	4.16	7.98	7.28	6.96	1.64	6.97	6.36	1.56	1.62	1.56	0.17	0.18
+maxbtag_higgs	49.50	9.14	7.95	5.79	0.77	2.88	3.57	7.34	6.75	6.47	1.38	6.45	5.86	1.28	1.34	1.30	0.14	0.14
+maxbtag_bbar	49.08	8.03	7.75	5.22	0.71	2.60	3.27	7.10	6.08	5.74	1.22	5.85	5.26	1.12	1.20	1.16	0.12	0.13
+allpfos	44.97	7.33	7.41	4.83	0.59	2.42	2.96	6.18	3.23	2.94	1.01	3.11	2.72	0.96	1.03	0.98	0.11	0.12
+minpfoinjets	41.96	6.43	7.02	4.26	0. 52	2.30	2.68	5.40	2.46	2.23	0 . 87	2.35	2.07	0.82	0 . 87	0.84	0.11	0.11
+logy23	37.19	5.02	6.54	3.91	0. 52	2.12	2.32	4.29	1.33	1.18	0 . 57	1.25	1.16	0.55	0.56	0.56	0.07	0.07
+logy34	36.93	5.02	6.53	3.90	0.50	2.12	2.31	4.15	1.17	1.01	0.55	1.15	1.04	0.54	0.54	0.54	0.07	0.07
+logy45	36.93	5.02	6.51	3.90	0.50	2.11	2.31	4.15	1.17	1.01	0.55	1.15	1.04	0.54	0.54	0.54	0.07	0.07
+logy56	36.93	5.02	6.16	3.77	0.44	1.91	2.21	4.08	1.17	1.01	0.55	1.14	1.04	0. 53	0.53	0.53	0.07	0.07
+btagsum_higgs	25.54	0.70	2.96	0.66	0.09	0.34	0.82	2.00	0.38	0.28	0.10	0.33	0.32	0.08	0.08	0.10	0.01	0.0
+btagsum_bbar	19.60	0.30	1.53	0.16	0.05	0.04	0.42	1.01	0.15	0.10	0.03	0.11	0.13	0.02	0.02	0.02	0.00	0.0
+higgsmass	17.59	0.30	0.94	0.11	0.02	0.02	0.30	0.70	0.12	0.09	0.02	0.08	0.10	0.01	0.01	0.01	0.00	0.0
# Evts(Remain)	35.0	0.5	8.9	0.9	0.0	0.1	26.1	15.5	7.8	10.8	8.6	10.2	22.9	9.0	4.1	6.6	0.4	0.0

Nsig integral(restricted range) : 35.0
Nock integral(restricted range) : 132.4
Significance : 2.71