Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

di-muon energy

Cuts applied on Reconstructed variables

Dip around 50 GeV seems apparent after coplanarity cut

Plans for Higgsino Study

- ***** Compare lepton selection efficiency between SGV samples and full sim samples
- Prepare materials for ICHEP presentation
- Pre-selection study for production of additional aa2f, ae3f bkg SGV samples
- ***** Observe MC info for dilepton / dijet mass
- ✤ Study reliability of fit (dependence of on fitting range, bin width, etc...)
- ✤ Continue to work on edge extraction

Plans for Systematic Error Studies

Study effect of systematic errors on analysis results

(together with Yu Kato (Univ of Tokyo))

* energy resolution :

change Vs by 0.1% (0.3% for 3-sigma) : TDR 500 GeV 0.07%/0.12% for e+/e-

polarization errors

change P by 0.25% (polarimeter accuracy) or by 0.75% for 3-sigma

personal view: not much point to do analysis without e+ polarization (unrealistic)

✤ luminosity spectrum requires time

Additional Material

Extraction of Cross Section [work in progress]

Strategy: Fit overall shape to estimate total number of signal events

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \tilde{\chi}_1^0 \, \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \ell^+ \ell^-$ OLD µµ result

Still need to update xsec fit for ee channel

Polarization (Pe-,Pe+) = (-0.8, +0.3)

Difference in di-muon energy between MC truth and Reconstructed info

• Comparison of reconstructed info between full sim and fast sim (AFTER isolated lepton finder)

Benchmarks in this Study

RNS model (Radiatively-driven natural SUSY)

(LSP)

• 4 light Higgsinos:

 $\widetilde{\chi}_1^0 \quad \widetilde{\chi}_2^0 \quad \widetilde{\chi}_1^+ \quad \widetilde{\chi}_1^-$

- ΔM about 10-20 GeV complies with naturalness (ISR tag not needed)
- This study: $\sqrt{s} = 500 \text{ GeV}$ Full detector simulation

Currently studying ILC1 benchmark

(Pe-, Pe+)	(-1.0,+1.0)	(+1.0,-1.0)	
$\sigma(\chi_1^+\chi_1^-)$ [fb]	1800	335	
$\sigma(\chi_1^0 \chi_2^0)$ [fb]	491	379	

$BR(\chi_1^+ \to \chi_1^0 q q')$	67%
BR(χ ₁ ⁺ → χ ₁ ⁰ lν) (l=e,μ)	22%
$BR(\chi_2^0 \to \chi_1^0 q q')$	58%
BR(χ₂⁰ → χ₁⁰ II) (I=e,μ)	7.4%

NUHM2 model parameters [arXiv:1404.7510]

χî

Ζ

Ζ

Benchmark	ILC1	ILC2	
M ₀ [GeV]	7025	5000	
M _{1/2} [GeV]	568.3	1200	
A ₀ [GeV]	-10427	-8000	
tanβ	10	15	
μ [GeV]	115	150	
M _A [GeV]	1000	1000	
M(χ ₁ ⁰) [GeV]	102.7	148.1	
$M(\chi_1^{\pm})$ [GeV]	117.3	158.3	
$M(\chi_2^{0})$ [GeV]	124.0	157.8	
M(χ ₃ ⁰) [GeV]	267.0	538.8	

Higgs precision measurements useful for parameter determination

 $\tilde{\chi}_{1}^{+}$

Defined at GUT scale Defined at weak scale Observables 2

Event Selection

Neutralino mixed production with leptonic decay $e^+e^- \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2 \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 \ell^+ \ell^-$

- Reconstruct two leptons (ee or μμ) which originate
 from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2-γ processes are removed by BeamCal veto, cuts on lepton track p_T, and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg.

(signal significance > 100)

signal

(16)

2-v

 μ^{-}

1

signal

Ζ

 $\gamma(4)$

vvII

1

 $\bar{\nu}_e$ (8)

Cuts for N1N2

- lepton type (µµ or ee) : the two leptonic channels of N1N2 analysis
- **nTrack = 2 :** number of charged tracks
- no hit in BeamCal : veto yy2f BG
- Pt_lep1,2 > 6 GeV and |cosθlep1,2| < 0.95:
- **Coplanarity < 1.0 rad :** angle between leptons in x-y plane
- Evis Eγmax < 40 GeV : visible energy (very small for signal)
- Emis > 300 GeV : missing energy (very large for signal)
- |cosθmissing| < 0.98 : θ of missing energy events
- $|\cos\theta Z| < 0.98$: Z^* production angle
- **Pt_dl < 80 GeV** : transverse momentum of dilepton
- Minv<50 GeV : dilepton invariant mass: determines ΔM

last of all observe distributions of Minv and dilepton energy (E_dl) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for C1C1

- lepton type (μ or e tag) and # of lepton =1
- Pt_mis > 10 GeV
- Jet Coplanarity < 1.0 rad
- |cosθjet1,2| < 0.95:
- nTrack(in jet) >1 :
- no hit in BeamCal :
- cosθjet1-lep < 0.2, cosθjet2-lep < 0 angle between jets and leptons
- Evis Eγmax < 60 GeV :
- Emis > 400 GeV :
- |cosθmissing| < 0.98 :
- |cosθZ| < 0.98 :
- Pt_jj < 50 GeV :
- Minv<30 GeV :

last of all observe distributions of Minv and dijet energy (Ejj) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for N1N2

- lepton type (µµ or ee) : the two leptonic channels of N1N2 analysis
- **nTrack = 2 :** number of charged tracks
- no hit in BeamCal : veto yy2f BG
- Pt_lep1,2 > 6 GeV and |cosθlep1,2| < 0.95:
- **Coplanarity < 1.0 rad :** angle between leptons in x-y plane
- Evis Eγmax < 40 GeV : visible energy (very small for signal)
- Emis > 300 GeV : missing energy (very large for signal)
- |cosθmissing| < 0.98 : θ of missing energy events
- $|\cos\theta Z| < 0.98$: Z^* production angle
- **Pt_dl < 80 GeV** : transverse momentum of dilepton
- Minv<50 GeV : dilepton invariant mass: determines ΔM

last of all observe distributions of Minv and dilepton energy (E_dl) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for C1C1

- lepton type (μ or e tag) and # of lepton =1
- Pt_mis > 10 GeV
- Jet Coplanarity < 1.0 rad
- |cosθjet1,2| < 0.95:
- nTrack(in jet) >1 :
- no hit in BeamCal :
- cosθjet1-lep < 0.2, cosθjet2-lep < 0 angle between jets and leptons
- Evis Eγmax < 60 GeV :
- Emis > 400 GeV :
- |cosθmissing| < 0.98 :
- |cosθZ| < 0.98 :
- Pt_jj < 50 GeV :
- Minv<30 GeV :

last of all observe distributions of Minv and dijet energy (Ejj) Kinematic edge is a function of Higgsino mass and ΔM

Cut table N1N2 , μμ (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
xsec	300.8	3.00E6	10566.2	2.68E6	261580	1065.2
N_gen	150395	1.50E9	5.28E6	1.34E9	1.31E8	532585
Lep_type nTrack=2	1974	9.1E8	444255	8.9E8	2.2E7	2426
BCAL veto	1950	6.0E6	149871	5.5E6	965354	2411
Pt_lep,1,2	1675	2.0E6	105721	1.4E6	295459	1986
cosθ_lep	1624	1.3E6	56001	910330	167734	1950
coplanarity	1407	48366	5272	3509	33067	22
Evis	1404	14325	2465	2248	4743	22
Emis, cosθmis	1393	1063	929	34	9	19
cosZ,Pt_II, Minv	1393	545	429	34	9	19 27

Cut table C1C1, µtag (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
Xsec [fb]	1065.2	3.00E6	10566.2	2.68E6	261580	300.8
N_gen	532585	1.50E9	5.28E6	1.34E9	1.31E8	150395
nLep=1 BCAL veto	57983	1.5E9	443296	1.2E6	860530	1135
Ptmis	38240	2.7E6	377010	465397	519308	964
Jet_coplanarity	26085	1.5E6	86399	83683	109325	531
Jet_cosθ nTrack (per jet) > 1	14612	305870	3066	555	2234	22
cosθjet-lep Evis	14308	3753	791	100	41	0
Emis, cosθmis	14231	83	57	3	0	0
Pt_jj, M_jj	14173	51	31	3	0	0