Homework at 12/14

Homework \#1

Calculate the Transfer Matrix for skew quadrupole magnet from Hamiltonian

$$
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+k_{1 S} x y \quad\left(k_{1 S}>0\right)
$$

(1) Calculate the equation of motion (second-order differential equation) for $(x+y)$ and $(x-y)$.
(2) The beam is transported in a constant skew quadrupole field When the initial condition is $\left(x_{0}, p_{x 0}, y_{0}, p_{y 0}\right)$ at $s=s_{0}$ derive the particle position $x(s)$ and $y(s)$.
(3) Derive a Transfer Matrix for skew quadrupole field from s_{0} to $s_{1}=s_{0}+L$

Homework \#3

The vector potential for skew sextupole magnet is $-\frac{q}{p_{0}} A_{s, 2 S}=\frac{k_{2 S} r^{3}}{3!} \sin 3 \theta$.
(1) Show the vector potential in Frenet-Serret coordinate (x, y, s).
(2) When the skew sextupole is moved by Δx in horizontal direction, the beam position is changed by $-\Delta x$ with respect to the magnet What kind of field is generated ?
(3) When the skew sextupole is moved by Δy in vertical direction, what kind of field is generated ?

Homework \#2

Assume the particle is pass through the beams with uniform distribution. The bunch population of the crossing beam are $N=2 \times 10^{10}$.
(1) Calculate the magnetic field by following round beam at $y=+r_{0}$ Hence, $\mu_{0}=4 \pi \times 10^{-7}$.

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}} \leq r_{0} ; r_{0}=50 \mathrm{~nm} \\
& -z_{0} \leq z \leq+z_{0} ; z_{0}=300 \mu \mathrm{~m}
\end{aligned}
$$

(2) Calculate the magnetic field by following flat beam at $y=+\rho_{y}$ Hence, you can simplify the circumference of flat beam as $4 \rho_{x}$.

${ }^{\text {y }}$	$\frac{x^{2}}{\rho_{x}^{2}}+\frac{y^{2}}{\rho_{y}^{2}} \leq 1$	$\begin{aligned} & \rho_{x}=500 \mathrm{~nm} \\ & \rho_{y}=5 \mathrm{~nm} \end{aligned}$
B	$-z_{0} \leq z \leq+z_{0}$	$; z_{0}=\begin{gathered} 300 \mu \mathrm{~m} \\ x \end{gathered}$

(3) For the beam with uniform distribution, the magnetic field along the y-axis (outside of beam) is changing as

$$
\text { (Round beam) } B_{x} \propto \frac{1}{y} \quad \text { (Flat beam) } B_{x} \propto \frac{2}{\pi} \arctan \frac{\rho_{x}}{y}
$$

Calculate the magnetic field at $y=500 \mathrm{~nm}$ both for round and flat beam
\#1 and \#3 are beam dynamics.
\#2 is beam-beam interaction.

