Characterizing Light Higgsinos from Natural SUSY at ILC $\sqrt{s} = 500$ GeV

Outline

- Update on edge and xsec extraction
- now using new <u>full sim samples</u>
- Extracted kinematic edge and cross section for just about <u>all channels</u>,

both polarizations

calculated propagation of uncertainty of observables to Higgsino mass

Extraction of Higgsino Mass

Almost done

- The position of the kinematic edges of the dilepton energy (E_{\parallel}) and invariant mass (M_{\parallel}) are functions of CM energy and the two neutralino masses.
- The maximum values E_{II,max} and M_{II,max} are extracted by a fit to obtain the neutralino masses after correcting for detector/reconstruction effects`

Cuts have been designed so as not to destroy upper edge

- Use toy MC (generated from MC data fit) to evaluate statistical uncertainty
- Making progress in kinematic edge extraction

Edge extraction

What has been changed since last time (July 13)

Optimized method for extraction of edge and cross section

- Modeling of complex signal and bkg distributions (energy, invariant mass)
- Bin width, fitting range

Still fine tuning in aim of better precision

e.g. Loosen cuts for edge extraction, tighter cuts for cross section extraction (?)

Now using full simulation bkg samples

(thanks to Miyamoto-san and others in the software group)

Took a while to check the samples and interpret difference between SGV

Analysis has been done for right-handed polarization as well.

Error Propagation

Edge precision ~1 %
 → uncertainty of
 Higgsino mass 1.5 – 2%

~0.5% for Chargino

Propagation of edge error to Higgsino mass error

In this section, the relevant symbols are defined as follow:

 E_{max} : higher kinematic edge of dilepton energy; δE_{max} : its uncertainty (from fit)

 ΔM : mass difference between $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$; $\delta \Delta M$: its uncertainty (from fit)

$$M_{1(2)}$$
: mass of $\tilde{\chi}^{0}_{1(2)}$

 β : boost of $\tilde{\chi}_2^0$ in the lab frame; $\gamma = 1/\sqrt{1-\beta^2}$

P: momentum of $\tilde{\chi}_2^0$ in the lab frame

The uncertainty of the mass of $\tilde{\chi}_2^0$ (M₂) is expressed using δE_{max} and $\delta \Delta M$ as

$$\delta M_2 = \sqrt{\left(\frac{\partial M_2}{\partial \Delta M}\right)^2 \delta \Delta M^2 + \left(\frac{\partial M_2}{\partial E_{max}}\right)^2 \delta E_{max}^2} \tag{0.1}$$

Both E_{max} and ΔM , along with their uncertainties, are obtained through a fit to the observed distributions of dilepton and invariant mass, respectively.

 E_{max} can be expressed as

$$E_{max} = \gamma \left(1 + \beta\right) \frac{\Delta M}{2} \left(1 + \frac{M_2 - \Delta M}{M_2}\right) \tag{0.2}$$

 β and P are functions of M_2 , ΔM , and \sqrt{s} , given by

$$\beta = P/\sqrt{P^2 + M_2^2} \tag{0.3}$$

$$P = \frac{\sqrt{s}}{2} \sqrt{1 - 2\left[\left(\frac{M_2 - \Delta M}{\sqrt{s}}\right)^2 + \left(\frac{M_2}{\sqrt{s}}\right)^2\right] + \left[\left(\frac{M_2 - \Delta M}{\sqrt{s}}\right)^2 - \left(\frac{M_2}{\sqrt{s}}\right)^2\right]^2} \tag{0.4}$$

In order to make use of Equation 0.2, the first term in Equation 0.1 can be expressed as

$$\frac{\partial M_2}{\partial \Delta M} = \frac{\partial E_{max}}{\partial \Delta M} \cdot \frac{\partial M_2}{\partial E_{max}} = \frac{\frac{\partial E_{max}}{\partial \Delta M}}{\frac{\partial E_{max}}{\partial M_2}} \tag{0.5}$$

		calculated	calculate	observed	observed	observed	observed	calculated	calculated	calculated	calculated	
		M1	M2	delta_M	∆ delta_M	Emax	∆ Emax	ΔM1	ΔM1/M1	ΔM2	∆ M2/M2	
N1N2	mm	102.255	123.015	20.76	0.2	73.81	0.86	1.7697	1.73%	1.7583	1.43%	
left	ee	100.296	120.811	20.5156	0.324223	74.3688	0.798674	2.1711	2.16%	2.1468	1.78%	
N1N2	mm	103.058	123.988	20.93	0.22	73.77	0.84	1.8189	1.76%	1.8056	1.46%	
right	ee	103.409	124.299	20.89	0.19	73.45	0.61	1.4406	1.39%	1.4280	1.15%	
												Г

Extraction of Cross Section

Uncertainty of right pol is about ¾ of left pol (evaluated using Toy MC)

Summary

preliminary results for most channels

- Neutralino: Edge precision ~1 % → uncertainty of Higgsino mass 1.5 2%
- Edge values not far from theoretical values, need some correction for detector effects
- Cross section precision 3-4 % for left pol, 2.8% for right pol
- Chargino : edge precision ~0.5% → uncertainty of Higgsino mass 0.5%
- Cross section precision : 0.8%,

To Do / Plans

- Justify method for edge extraction (chargino) : use MC truth (?)
- explain deviation between extracted and theoretic values
- Converge current analysis to a full set of results
 → input to document which demonstrates ILC new physics discovery potential
- Need to implement gamma gamma overlay bkg
- Plans for publication
- Conduct analysis at other CM energies and polarizations
 → as input for studies on SUSY parameter determination (DESY)

Additional Material

Event Selection

- Reconstruct two leptons (ee or μμ) which originate from Z^{*} emission in decay of χ₂⁰ to χ₁⁰
- Major residual bkg. are 4f processes accompanied by large missing energy (vvll)
- 2-γ processes are removed by BeamCal veto, cuts on lepton track p_T, and coplanarity

Chargino pair production with semileptonic decay $e^+e^- \rightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 q q' \ell \nu$

- Reconstruct two jets which originate from W^{*} emission in decay of χ₁[±] to χ₁⁰
- Use lepton (e or μ) from the other chargino as tag
- BeamCal veto, cuts on missing p_T, # of tracks, # of leptons, and coplanarity remove almost all bkg.

(signal significance > 100)

signal

(16)

2-v

 μ^{-}

1

signal

Ζ

 $\gamma(4)$

vvII

1

 $\bar{\nu}_e$ (8)

Cuts for N1N2

- lepton type (µµ or ee) : the two leptonic channels of N1N2 analysis
- **nTrack = 2 :** number of charged tracks
- no hit in BeamCal : veto yy2f BG
- Pt_lep1,2 > 6 GeV and |cosθlep1,2| < 0.95:
- **Coplanarity < 1.0 rad :** angle between leptons in x-y plane
- Evis Eγmax < 40 GeV : visible energy (very small for signal)
- Emis > 300 GeV : missing energy (very large for signal)
- |cosθmissing| < 0.98 : θ of missing energy events
- $|\cos\theta Z| < 0.98$: Z^* production angle
- **Pt_dl < 80 GeV** : transverse momentum of dilepton
- Minv<50 GeV : dilepton invariant mass: determines ΔM

last of all observe distributions of Minv and dilepton energy (E_dl) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for C1C1

- lepton type (μ or e tag) and # of lepton =1
- Pt_mis > 10 GeV
- Jet Coplanarity < 1.0 rad
- |cosθjet1,2| < 0.95:
- nTrack(in jet) >1 :
- no hit in BeamCal :
- cosθjet1-lep < 0.2, cosθjet2-lep < 0 angle between jets and leptons
- Evis Eγmax < 60 GeV :
- Emis > 400 GeV :
- |cosθmissing| < 0.98 :
- |cosθZ| < 0.98 :
- Pt_jj < 50 GeV :
- Minv<30 GeV :

last of all observe distributions of Minv and dijet energy (Ejj) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for N1N2

- lepton type (µµ or ee) : the two leptonic channels of N1N2 analysis
- **nTrack = 2 :** number of charged tracks
- no hit in BeamCal : veto yy2f BG
- Pt_lep1,2 > 6 GeV and |cosθlep1,2| < 0.95:
- **Coplanarity < 1.0 rad :** angle between leptons in x-y plane
- Evis Eγmax < 40 GeV : visible energy (very small for signal)
- Emis > 300 GeV : missing energy (very large for signal)
- |cosθmissing| < 0.98 : θ of missing energy events
- $|\cos\theta Z| < 0.98$: Z^* production angle
- **Pt_dl < 80 GeV** : transverse momentum of dilepton
- Minv<50 GeV : dilepton invariant mass: determines ΔM

last of all observe distributions of Minv and dilepton energy (E_dl) Kinematic edge is a function of Higgsino mass and ΔM

Cuts for C1C1

- lepton type (μ or e tag) and # of lepton =1
- Pt_mis > 10 GeV
- Jet Coplanarity < 1.0 rad
- |cosθjet1,2| < 0.95:
- nTrack(in jet) >1 :
- no hit in BeamCal :
- cosθjet1-lep < 0.2, cosθjet2-lep < 0 angle between jets and leptons
- Evis Eγmax < 60 GeV :
- Emis > 400 GeV :
- |cosθmissing| < 0.98 :
- |cosθZ| < 0.98 :
- Pt_jj < 50 GeV :
- Minv<30 GeV :

last of all observe distributions of Minv and dijet energy (Ejj) Kinematic edge is a function of Higgsino mass and ΔM

Cut table N1N2 , μμ (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
xsec	300.8	3.00E6	10566.2	2.68E6	261580	1065.2
N_gen	150395	1.50E9	5.28E6	1.34E9	1.31E8	532585
Lep_type nTrack=2	1974	9.1E8	444255	8.9E8	2.2E7	2426
BCAL veto	1950	6.0E6	149871	5.5E6	965354	2411
Pt_lep,1,2	1675	2.0E6	105721	1.4E6	295459	1986
cosθ_lep	1624	1.3E6	56001	910330	167734	1950
coplanarity	1407	48366	5272	3509	33067	22
Evis	1404	14325	2465	2248	4743	22
Emis, cosθmis	1393	1063	929	34	9	19
cosZ,Pt_ll, Minv	1393	545	429	34	9	19 26

Cut table C1C1, µtag (Pe-, Pe+) = (-80,+30)

	sig	bkg	4f_l	aa_2f	ae_3f	SUSY bkg
Xsec [fb]	1065.2	3.00E6	10566.2	2.68E6	261580	300.8
N_gen	532585	1.50E9	5.28E6	1.34E9	1.31E8	150395
nLep=1 BCAL veto	57983	1.5E9	443296	1.2E6	860530	1135
Ptmis	38240	2.7E6	377010	465397	519308	964
Jet_coplanarity	26085	1.5E6	86399	83683	109325	531
Jet_cosθ nTrack (per jet) > 1	14612	305870	3066	555	2234	22
cosθjet-lep Evis	14308	3753	791	100	41	0
Emis, cosθmis	14231	83	57	3	0	0
Pt_jj, M_jj	14173	51	31	3	0	0