
Stripline BPM resolution +
Firmware Plans

Glenn Christian

26/08/16

Effect of inclusion of off-peak samples

• Looked at some time
ago – negligible
effect, but resolution
generally poorer ~1
micron

• Naively, expect at
best ~3 dB
improvement in
resolution

Data: mCal5_MoverVPos_0.000_Board1_100616

Calibration check
(mCal3 on 100616)

Calibration constants with Integration

Integration width FONTP1 FONTP2 FONTP3

1 -0.0052 -0.0049 -0.0052

3 -0.0052 -0.0051 -0.0053

5 -0.0054 -0.0054 -0.0057

7 -0.0053 -0.0054 -0.0055

9 -0.0054 -0.0055 -0.0056

11 -0.0053 -0.0053 -0.0058

Nominal calibration constant = 0.005

Resolution with Integration
(mCal5_MoverVPos_0.000_Board1_100616 – HIGH CHARGE!!)

Integ width Nominal calibration Calculated calibration

Model* Fit Model* Fit

1

0.47

0.42
0.44

0.40

0.17 0.17

0.30 0.29

3

0.20

0.17
0.18

0.16

0.12 0.12

0.17 0.16

5

0.25

0.21
0.21

0.19

0.15 0.14

0.21 0.19

* NB: model does not correspond to the correct lattice for the dataset, but is used
to compare

However, unfortunately …

Low charge data from
week after taken with new
(CTF) firmware and
Standalone DAQ.

Classic 2015 BPM paper
dataset. Taken with old
FONT5 board #2.

Interpretation

• Clearly integration is having an effect for the high charge dataset,
however it makes things worse for other datasets!
– Second order effect, i.e. artefact of something else degrading the

resolution?
– E.g., integration compensates for source of noise which is artificially

limiting the high charge data, eg sampling jitter? Perhaps low charge
data is actually noise limited above this threshold.

• Gives some confidence that the underlying resolution is (would be)
below 200 nm!

• Other (3 dB) effects:
– Sampling jitter !
– ADC noise (removal of 3 dB attenuators at output of processors)

• If we did want real-time integration, would require re-design of the
upstream FB firmware
– Always envisaged anyhow!

Firmware to-do List

• Sampling jitter (zeroth priority -> ~1 week)
– Complete studies from 4-6 weeks ago

• Correlation of jitter across ADC banks/channels
• Stripped back firmware (removal of PLL and DCM-360)
• Removal of 40 MHz (for ATF F/W) and replacement with derived clock (eg

357/11)

• CTF F/W (Highest priority! ~ 1 week -> 1 month)
– Bugfixes to existing firmware
– Averager/Combiner module(s)

• F/W mods for GM-FF (Doug) (~ 1 hour -> 2 days)
• New ATF2 firmware for IPFB (and upstream?) (low priority for now)
• Other ideas/issues (Nil priority – abandoned for now)

– Ultra-high latency u/s firmware ??
– ADC alignment monitor overhaul …
– …

ATF2 IP(/u-s) FW

• Planned to do new module for IP-FB based on
new firmware base for CTF

– allow for multi-sample averaging (integration)

– multiplexed FF-inputs (i.e. A,B -> C; A,C -> B; B,C -> A)

– …

• Same firmware (configurable with `BUILD
options) can be used upstream especially if eg no-
PLL, no-40MHz, multi-sample integ needed

– Possibly limited to 2 bunch operation initially!

CTF PFF F/W

• Bugfixes (Highest priority)
• Fix overflow detection on output IIR filter [~1 day + ~> 1 day to remind myself what the problem is,

how id all works etc]
• Other low-level problems!! ??

• Averager/combiner module (~ 1-2 weeks - > 1 month)
– Original plan to have a common module to do both
– Average/combine factor 2,4,8
– no longer sure about this …
– Also, planned to use 300/400 MHz clock (3 GHz derivative) synchronous to sub-pulse freq.

• Maybe can just use 357 MHz, and live with non-perfect correction at the ends of the pulse – should
keep all timing aspects same

– Minimal approach (High priority)
• Just combiner module (maybe just factor 8 for simplicity)
• Just average (x2) at the output – compensate for decimation.

– Other idea
• Subtract every other sample, ala slow drift correction?
• Allow correction along the entire pulse(?), eg phase sag not seen by PFF correction
• Relies on timing of correction being set very accurately

– Would averaging help with this, i.e. (b-a)+(c-b) = (c-a)?

F/W for Doug (1hour -> 2 days)

• Have a new UART module operating on DigInA:
– capable of any connection speed (75 Baud to 25

MBaud)!)
– Configurable word width
– Also, added two-byte little-endian decoder to send 2 x

8-bit bytes (= 14-bit value) with MSB representing the
byte sequencing, though (I think) this is untested.

• Two options for 14(13)-bit operation
– Either send single jumbo-byte (13/14 bit payload)

• Should work straight-off-the-bat

– Or, use the two-byte decoder
• Preferred, but may require testing in lab!

New UART continued (lowest priority)

• For new (CTF) firmware made several changes to Ben’s original UART module
– Tidying code/removing unused functions
– Enabling real-time switch between three Baud rates: 115200, 230400, 460800
– Separating UART TX and RX into different modules (clocked on different domains – UART RX

assumed to need to keep running even when 40 MHz clock disabled (sampling)

• But essentially still the old UART module(s) with absolutely no error checking
• Would like to update the main (DAQ) UART to new module including:

– Fully configurable speed (already implemented). Real-time switching not routinely necessary
(only used by me!)

– Configurable as simplex (RX or TX), or full-duplex. N bits, parity (none,odd,even), N stop bits ..
– Error checking

• Detect framing, and RX/TX overrun errors
• Clk16x? Framing errors, noise
• Parity checking? Would not always want to use, due to overhead, just if suspect problem in data

transmission
• Would be better to append simple checksums to all RAM contents (e.g. 11 x DAQ RAMs, 1 x CR

memory, 1x FB gain-LUT RAM)

• All not very much work, and some of it (at least some error checking) should be
done, but low priority nonetheless!

DAQ issues

• ….

