Report from the Software and Analysis Working Group

Oleksandr Borysov Tel Aviv University

FCAL Workshop Tel Aviv, September 18, 2016

Overview

- There were 5 meetings since the last FCAL workshop;
- 8 talks;
- Discussion overview:
 - LumiCal software update;
 - LHCal study;
 - Update on BeamCal study;
 - Beam test data analysis and simulations
- Future plans

LumiCalClusterer

- LumiCalClusterer processor usable within Marlin environment – need still few fixes and tune-up
- LuCaS fully compatible, may be used with Marlin LumiCalCluterer

Required DD4Hep geometry import interface implementation

3

LHCal Study in Simulations

- LHCal has been intensively studied by Maryna and Vlad students from Kiev group;
- They have successfully graduated with master degree this year;
- The work continues by new students Sasha and Dima under the supervision of Yuriy Onishchuk.
- Hadrons as nuclearly and ionisationally interacted particles have the most complicated response function:

 $R_{H} = A_{1} \cdot G(E, E_{01}, \sigma_{1}) + A_{2} \cdot G(E, E_{02}, \sigma_{2}) + A_{V} \cdot V(\lambda_{V}, \kappa, \beta^{2}), \quad \sigma_{2} > \sigma_{1}$

- Fraction of ionisation events is of 0.05 0.2 for Fe and W absorbers
- Fe absorber gives 3-4 times larger values
- Kaons have a bit bigger values in comparison with pions

100

Particle Energy (GeV)

60

80

Configurations Explored Nominal: L^{*} = 4.1m; no antiDiD; plug in place Then, relative to Nominal: Small L*: L* = 3.5m AntiDID: Include antiDiD field Small L* AntiDID: L* = 3.5m with antiDiD field Wedge: Remove BeamCal plug **Circle:** Remove additional BeamCal coverage as shown in prior slide.

Appreciable decrease in inefficiency for 30 < R < 50 mm → Physics studies to see if important...

 BeamCal reconstruction shows only small improvement with anti-DiD field.

Beam Parameters Reconstruction in BeamCal

Energy depositions in BeamCal from $e^+ e^-$ pairs, produced by beamstrahlung photons, can be used for fast beam parameter reconstruction and instant luminosity measurements.

- Use GuneaPig to simulate the beam with modified parameters:
 - Increase beam envelope at origin;
 - Move waist of electron and positron beam;
 - Change targeting angle of electron and positron beam.
- Study parameters (observables) of 3D energy deposition distribution in BeamCal:
 - Deposited energy,
 - mean depth of shower,
 - L/R and up/down asymmetries,
 - thrust (relative to barycenter) value.
- find the dependence between BeamCal observables and beam parameters.

Previous study assumed linear dependence between BeamCal observables and beam parameters and used Moore-Penrose inverse of the Taylor matrix to calculate the parameters of the beam.

Beam Parameters Reconstruction in BeamCal

Up-Down Asymmetry

e⁺ and e⁻ beam envelope scan

9

Study in progress, it could affect IP and BeamCal design

TB 2014 Data

- The data collected during the beamtest of 2014 have been analyzed and most of the results were presented in the paper draft:
 - raw signal processing;
 - calibration and signal to noise ratio;
 - longitudinal shower development;
- The paper draft was discussed both at S&A and Hardware WG meetings.
- Ongoing study of the shower development in transverse plane:
 - position reconstruction;
 - the procedure has been developed for Moliere radius calculation;
 - both are included in the paper draft, but some tests of the final results were needed.

TB 2014 Shower Position Reconstruction

position reconstruction using $W_0 = 1.8$

Shower position in LumiCal sensor radial direction, corresponds to θ in LC experiment

Gaussian fit to the transverse shower profile position reconstruction using fit results

- Both supposed to be the beam profile in transverse plane
- Study is in progress

Resolving the differences in the simulations of TB 2014 - geometry

Comparison without upstream elements

5 GeV e shower profile - no upstream elements Alina < E_{Alina} >/ < E_{Strahinja} > .1 .1 .1 Strahinja Ŧ 5 GeV e shower profile - no upstream elements ŧ Ŧ 0.95 0.98 0.96 2 6 8 10 2 8 4 6 10 Depth (Layer) Depth (Layer)

S. Lukić, FCAL Software WG 2nd March 2016 Simulations of TB 2014 - geometry

Final conclusion was not made and no recent progress reports...

Location of the beam spot

Beam-test 2016 Simulation

ideas

- Verify the tab bonding (or other candidates is ready)
- 2. Add more W layers
- 3. Use of a tracker in front of lumical to identify electron/photon

This was presented by Yan and discussed at the last FCAL workshop.

Identification e/γ

 $Angle e/\gamma$ e beam f beam radiator magnet 130cm 100 cm 85cm

Need to create e/γ

- Need to curve the e trajectory
- Need to have both of them in the silicon telescope
- Need to have a silicon tracker in front of the lumical detector and both e and γ inside

If we want both photon and e inside the telescope :

 $\tan \theta = 2/(130+100+85) = 6 \text{ mrad} = 0.4 \text{ degrees}$

Beam-test 2016 Simulation

Copper Absorber of 1.5 and 3.0 mm Thickness

The run was 100000 e- of 5 GeV through <u>**1.5 mm</u>** of Copper (density: 8.96 g/cm3) Number of secondaries per event :</u>

- Gammas = 1.28;
- electrons = 0.5193;
- positrons = 0.02402

The run was 100000 e- of 5 GeV through <u>3 mm</u> of Copper (density: 8.96 g/cm3) Number of secondaries per event :

- Gammas = 2.758;
- electrons = 1.274;
- positrons = 0.09292

Beam-test 2016 Simulation

Electron and Photon Beam Position

ILD Plans

Materials presented in ILD Analysis/Software Meeting (September 14) Report from Software coordinator - Frank Gaede.

Main Goal for next months

- prepare the software and computing tools for large scale Monte Carlo production for further ILD detector optimization in preparation of the update document to the TDR
- using the newly developed software chain with:
- DBD-like ILD model and
- new small ILD model
 - \rightarrow talk by Ties in last ILD Phone Meeting

Detailed Baseline Design: ILD_o1_v05, ILD_o3_v05 (SciEcal in DD4hep) ILD_s1_v01 (small)

- large SM and BSM data samples for ongoing and future physics analyses
- started by gathering information on status and open issues of software and computing tools
- validation of new DD4hep based software chain
- finalization and validation of new reconstruction chain for old (DBD) and new sim.

iLCSoft release v01-17-10

- released iLCSoft v01-17-10 in 1. week of August
 - progress in tracking, PFA and HLR for DBD re-reconstruction
 - starting point for validation of the new ILD simulation models
- started to prepare patch release v01-17-10.p01

future iLCSoft releases

- started to move into the new world:
 - using C++11 in the code
 - requires gcc4.8 and higher only
 - ROOT6 (requires C++11)
 - (partly) move the iLCSoft packages to github
 - started with DD4hep this week
 - phase out old (Mokka based) code and packages
 - create the software chain for the ILD MC mass production
 - cannot expect all code to be backward compatible

ILD Plans

ILD sub-detector contacts

group	name	detectors/systems	
Calo	Daniel Jeans	Ecal, Hcal	
Si-Tracker	Marcel Vos	SIT, SET, FTD	
VFS	Bogdan Pawlik	beamCal, LCal, LHCal	-
Yoke	Nicola d'Ascenzo	Muon, Coil	
MDI	Karsten Buesser	beam pipe, cables, services	

- they will play an important role in
 - validating the simulation models
 - geometry parameters and materials
 - · validating the digitization (and reconstruction)
 - realism of the digitizers
 - expected resolutions/performance

CLIC Simulation

Introduction

- Future linear collider software chain based on two pillars
 - LCIO Event Data Model
 - DD4hep Geometry Source
- Recent developments
 - DD4hep core/DDG4/ddsim mostly finished
 - Finalising the detector model
 - Track reconstruction with full silicon tracking in MARLIN
 - Providing DD4hep based geometry information and tracks to PandoraPFA
 - Improvements in Pandora and LCIO, and other packages

CLIC Simulation Models

- Have two options of the detector model: Main difference is the tracker layout
- Different versions for both options when wrong parameters are fixed, or changes requested
- Models currently in work: CLIC_o[23]_v06

Reconstruction: Very Forward Calorimeters

Reconstruction of electromagnetic showers in LumiCal and BeamCal BeamCal:

Reconstruction usable with dd4hep pending final validation

LumiCal:

Not yet able to handle dd4hep geometry or input files

Forward Region in CLIC

Very Forward Region, Beam Pipe

Request to increase incoming beam pipe radius behind ITF BPM

- Found discrepancy between BeamCal position in simulation model and engineering drawing
- Waiting for updated numbers for beam pipe
- Need to shrink beam pipe radius before QD0, but that is not part of the simulation model at the moment

Summary

- LumiCal:
 - Cluster reconstruction class (LumiCalClusterer) and stand alone simulation program LuCaS have been updated;
 - Ongoing work to test it with DD4Hep;
 - Finalizing TB 2014 data analysis, namely an estimation of the transverse shower size;
 - Arrive to conclusion in understand the discrepancy between TB 2014 simulation results obtained using DD4Hep framework and Geant4 application directly;
 - Redo the study of luminosity measurements in simulation with recent models of ILD,
 CLIC detectors and consider the improvement its accuracy for CLIC.
- LHCal:
 - Ongoing work on LHCal simulation study using DD4Hep framework.
- BeamCal:
 - Recent studies made only by UCSC aimed on the design optimization of BeamCal for fast beam parameters measurements and enhancing its contribution in physics analysis.

Summary

- LumiCal:
 - Cluster reconstruction class (LumiCalClusterer) and stand alone simulation program LuCaS have been updated;
 - Ongoing work to test it with DD4Hep;
 - Finalizing TB 2014 data analysis, namely an estimation of the transverse shower size;
 - Arrive to conclusion in understand the discrepancy between TB 2014 simulation results obtained using DD4Hep framework and Geant4 application directly;
 - Redo the study of luminosity measurements in simulation with recent models of ILD,
 CLIC detectors and consider the improvement its accuracy for CLIC.
- LHCal:
 - Ongoing work on LHCal simulation study using DD4Hep framework.
- BeamCal:
 - Recent studies made only by UCSC aimed on the design optimization of BeamCal for fast beam parameters measurements and enhancing its contribution in physics analysis.

Thank you for your attention