The LHCal study Particle identification

Oleksandr Ustinov, Yuriy Onishchuk

Kiev Taras Shevchenko National University

18-Sep-2016

General remarks

- The LHCal as a part of the Forward Calorimeter
- Particle identification in the LHCal
- Particle type classification
- Machine learning to solve the classification problem

Machine Learning

Main features:

- Machine learning ("ML") explores the study and construction of algorithms that can learn from and make predictions on data
- Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions, rather than following strictly static program instructions
- Used to devise complex models and algorithms that lend themselves to prediction

Types of ML:

- Classification identifying to which category an object belongs to
- Regression predicting a continuous-valued attribute associated with an object
- Clustering automatic grouping of similar objects into sets
- ▶ Model selection comparing, validating and choosing parameters and models
- Dimension reduction reducing the number of random variables to consider
- Preprocessing feature extraction and normalization

Machine Learning

Models for Classification in ML:

- Support Vector Machines
- Decision Trees
- Nearest Neighbors
- Naive Bayes

Use **Naive Bayes** algorithm from the Python scikit-learn package for Particle classification

Particle identification in LHCal

Used parameters to test ML possibilities in PID:

Deposited Energy

$$E_{dep} = \Sigma_{i=0}^{n} E_{i}$$

- Number of cells n
- Mean Z-coordinate

$$\langle Z \rangle = \frac{\sum_{i=0}^{n} Z_i \cdot E_i}{\sum_{i=0}^{n} E_i} = \frac{\sum_{i=0}^{n} Z_i \cdot E_i}{E_{dep}}$$

• σ_L - longitudinal energy dissipation according to track direction:

$$\sigma_L^2 = \frac{\sum_{i=0}^n (L_i - L_{grav})^2 \cdot E_i}{E_{dep}}$$

where L_{grav} – position of the track center of gravity

• σ_T - transversal energy dissipation according to track direction

$$\sigma_T^2 = \frac{\sum_{i=0}^n R_i^2 \cdot E_i}{E_{dep}}$$

where R_i – distance to the track

(a)

Particle identification in LHCal

Particle types divided on 3 groupes:

- ▶ Muons (µ) exclusively ionisation energy losses
- **EMs** (electrons and γ) as EM shower produced particles
- Hadrons (π, K) as nuclearly and ionisationally interacted particles

Events with π and ${\it K}$ like as $\mu-{\rm removed}$

Tested combinations of parameters:

- E_{dep} vs $\langle Z \rangle$
- σ_L vs σ_T
- E_{dep} vs σ_L , σ_T
- $\langle Z \rangle$ vs σ_L , σ_T
- *E*_{dep} vs number of cells
- E_{dep} vs $\langle Z \rangle$ vs σ_L, σ_T
- E_{dep} vs $\langle Z \rangle$ vs number of cells vs σ_L , σ_T

1

Identification quality criterion:

$$\mathsf{Efficiency} = 100\% \cdot (Y_{prediction}^{true} / N_{samples})$$

(a)

 E_{dep} vs $\langle Z
angle$

- \blacktriangleright Reliable localization of events caused by μ and EMs
- K and π populate an intermediate region
- Possible good separations for all particle types

A D > < A
 A
</p>

E_{dep} vs $\langle Z \rangle$

ML_W_sumEn_meanZ Efficiency 2 0.9 • μ 0.8 e. γ Δ π, Κ 0.7 0.6 0.5^L 20 40 60 80 100 Particle energy (GeV)

- Separation improves with energy enlargement
- \blacktriangleright Good Efficiency of the particle identification for EMs and μ within the whole energy range
- Good Efficiency for hadrons with Particle Energy > 10 GeV

8/25

A B >
 A
 B >
 A
 B
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$\sigma_L \, \mathrm{VS} \, \sigma_T$

- ▶ For $\mu \sigma_L \gg \sigma_T$ (long line tracks): Reliable localization of events
- EMs have $\sigma_L \simeq \sigma_T$ (good deposited energy localisation)
- Generally σ_L, σ_T for hadrons larger than for EMs (wide space dispersion of deposited energy)
- Low Particle Energy events overlapped with EMs (localisation in the Forward part of the LHCal)

 $\sigma_L \text{ VS } \sigma_T$

- \blacktriangleright Good Efficiency of the particle identification for EMs and μ within the whole energy range
- Poor Efficiency for hadrons with Particle Energy < 20 GeV</p>

10/25

E_{dep} vs σ_L/σ_T

- Reliable localization of events caused by μ
- Sufficient overlapping of events for Hadrons and EMs
- Energy enlargement improves the separation of Hadrons and EMs

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$E_{dep} vs \sigma_L / \sigma_T$

- \blacktriangleright Good Efficiency of the particle identification for EMs and μ within the whole energy range
- Poor Efficiency for hadrons with Particle Energy < 20 GeV</p>

12/25

÷.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$\langle Z \rangle$ vs σ_L/σ_T

Good separations for hadrons, μ, EM with Particle Energy > 10 GeV

$\langle Z \rangle$ vs σ_L/σ_T

- \blacktriangleright Good Efficiency of the particle identification for EM and μ within the whole energy range
- Good Efficiency for hadrons with Particle Energy > 10 GeV

æ

Edep vs number of cells

- μ and EMs events have linear dependencies vs Particle Energy
- Hadrons have more wider dispersion

Edep vs number of cells

- Good Efficiency of the particle identification for EM and µ with Particle Energy > 10 GeV
- Poor Efficiency for hadrons with Particle Energy < 20 GeV</p>

16/25

E_{dep} vs $\langle Z \rangle$ vs σ_L , σ_T

- The Efficiency dependence for 4 parameters
- \blacktriangleright Good Efficiency of the particle identification for EM and μ within the whole energy range
- Good Efficiency for hadrons with Particle Energy > 10 GeV

17/25

E_{dep} vs $\langle Z \rangle$ vs number of cells vs σ_L , σ_T

- The Efficiency dependence for 5 parameters
- The best results for the Efficiency
- Nice identification for all types of particles with energies larger than 10 GeV

Conclusions

Conclusions

- Machine Learning possibilities in particle identification for the LHCal were studied
- Efficiency ≥ 95% for the particle identification have been obtained for the W-Si sandwich within the energy range of 1-100 GeV
- Nice identification based on ML for all types of particles with energies larger than 10 GeV using combination of 5 parameters

Thanks for attention

Upload slides

Deposited Energy vs $\langle Z \rangle$

<□> < @> < E> < E> E のQ(

21/25

 $\sigma_L \operatorname{VS} \sigma_T$

Deposited Energy vs σ_L/σ_T

23/25

$\langle Z \rangle$ vs σ_L / σ_T

Deposited Energy vs number of cells

25/25