

Preliminary Monte Carlo results on the 2015 test beam

Alina - Tania Neagu

- Institute of Space Science -

presented at 29th FCAL Collaboration Workshop | 2016| Tel Aviv University

Overview

- Implementation of 2015 test-beam geometry, materials and beam in Geant4
- Energy deposition on silicon pads
- Energy deposition on silicon sensors
- Longitudinal shower development
- Conclusions

2015 Fcal TB geometry and materials in Geant4

2015 test-beam set-up in Geant4

Telescope: 6 plans

Tigger counters: 4 plans

Beam

- **-** e-, 5GeV
- uniform distribution of e- inside a rectangle: of 20 (horiz) x 10 (vert) mm²

An example of Geant4 event simulation

Energy deposition on silicon pads

ollaboration

Geant 4 simulation conditions

-PAI for the e+, e-, gamma interaction with silicon sensors and standard EM model for the interaction with tungsten plates and other materials

- Number of events 10000/configuration

Longitudinal shower development

Conclusions

- the geometry of 2015 TB was implemented in Geant4.
- It was simulated the energy deposition on every sensor pad
- It was determined the energy deposition on sensors/configuration
- It was determined the longitudinal shower development

