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Scope and purpose of the talk

Solid state detectors with direct electrical signal readout

(not scintillators, gas or liquid detectors )

Silicon, GaAs, Diamond and Sapphire

Detector functions

As a solid state

Ionisation chamber

Charge carriers are 

Generated by a particle

And then drift in a E field

Signal is readout by an 

amplifier
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Radiation damage

Particle knocks atoms out of the crystal lattice – introduces defects

These defects could act in different ways

Not so important

for undoped materials

Not so important

For wideband materials
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+ possibility of

spatial charge distribution

⇒ Internal field and 

polarisation



Silicon. Motivation and who is doing it
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Expected radiation load

For silicon detectors

HL-LHC 3ab-1

Neutron Fluence

1.5x10-16

Dose ~ 5 MGy

Rough estimate

FCC 3ab-1: Neutron Fluence 3x10-16,Dose ~ 10 MGy

FCC 30ab-1: Neutron Fluence 3x10-17, Dose ~ 100 MGy



Silicon. Motivation and who is doing it

RD 50 collaboration (www.cern.ch/rd50/ ) since 2003

> 250 members working on radiation hard silicon detectors

Goal => Silicon detectors able to withstand fluence upto

1016 1 MeV neutron equivalent per cm-2

+ A working group WODEAN (Workshop on Defect Analysis

in Silicon Detectors) 

RD 50 mostly study strip and pixel detectors

Hadronic irradiation
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Silicon. Results overview. Dark current

Dark current rises linearly with the fluence 

This means for 10x10x0.3 mm detector Idark ~ 1 mA @ room temp.

=> Needs cooling to at least -20C and up to -50C (still uA currents)
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RD 50 data



Silicon. Results overview. CCE

Signal is visible after 1016 n/cm-2, but Vfd goes into kilovolt range

Needs at least 1kV bias (no full depletion) and cooling 
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RD 50 data



Motivation. Very Forward Region

EM calorimeter with sandwich structure: 
30 layers of 1 X0, 3.5mm W and 0.3mm sensor, Moliére radius RM ≈ 1cm

Angular coverage from 10 mrad to 43 mrad , 

BeamCal

Max expected dose about 1 MGy per year of operation (3TeV CLIC, 

~0.5 ILC). Background from beamstrahlung-generated pairs. Mostly 

EM, energy ~ 10 MeV. Need for a radiation hard material, cooling is 

difficult.
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Investigated materials

Gallium arsenide (GaAs), 

Polycrystalline CVD (chemical vapour deposition) Diamond (pCVD)

Single crystall CVD Diamond (sCVD)

Sapphire

GaAs Si Diamond Sapphire

Density 5.32 g/cm3 2.33 3.51 3.98

• Pair creation E 4.3 eV/pair 3.6 13 24.6

• Band gap 1.42 eV 1.14 5.47 9.9

• Electron mobility 8500 cm2/Vs 1350 2200 >600

Hole mobility 400 cm2/Vs 450 1600 -

• Dielectric const. 12.85 11.9 5.7 9.3-11.5

• Radiation length 2.3 cm 9.4 18.8

Ave. Edep/100 µm

(by 10 MeV e-)  69.7 keV 53.3 34.3

MPV pairs/100 µm 15000 7200 3600 2200

Structure p-n or insul. p-n insul. insul.
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pCVD Diamond

• pCVD diamond:
– radiation hard

– Good properties : high mobility, low 
εR = 5.7, thermal conductivity

– availability on wafer scale

• Samples investigated:
– Element Six (ex-DeBeers)

– 1 x 1 cm2

– 200-500 μm thick 

(typical thickness 300μm)

– Ti(/Pt)/Au metallization

(courtesy of IAF)

(courtesy of IAF)

The only problem is that there is only one

detector-grade material manufacturer

Price is still too high for large-scale application
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pCVD Diamond. CCE

A number of samples were irradiated (10 MeV electrons)

10 MGy for diamond roughly correspond to 1016 n/cm-2 for Si 

Typical behaviour:

Increase in CCD at low 

dose =>

pumping - i.e. filling of 

the traps

Then gradual decrease 

of efficiency with dose

After absorbing 7MGy: 

CVD diamonds still 

operational. 

@500V
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~ -80%

Signal decreased by ∼ 80 % after absorbed dose of about 7 MGy

Slight increase in dark current, but still in pA range

pCVD Diamond. Dark current

E6_4 sample from Element 6, 500 μm
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sCVD Diamond detector
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Single crystal CVD (chemical vapour deposition) diamond

CVD growth on top of diamond substrate

+ Low defect content, very good detector properties

- Small area (up to 5x5 mm), very high price

Sample produced by Element Six

5x5 mm, 320μm thickness

initial charge collection efficiency about 100% (CCD 320μm)



sCVD Diamond. Irradiation results
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Irradiation to 10 MGy

CCE dropped to 10%

of the initial value

No visible annealing 

in 18 month

No significant increase in the dark current

after the irradiation (still in pA range)



Diamond detector application. CMS beam monitoring
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Fluence ~ 3x1014 rough estimate



GaAs Detector

Supplied by FCAL group at JINR

Produced in Tomsk

Sample is semi-insulating GaAs doped by Sn

(shallow donor) and compensated by Cr (deep 

acceptor). This is done to compensate electron 

trapping centers EL2+ and provide i-type 

conductivity. Charge transport by electrons only.

CCE ~ 50% by default.

Sample works as a solid state ionisation chamber

Structure provided by metallisation (similar to diamond)

500 µm thick detector is divided into 87 5x5 mm pads

and mounted on a 0.5mm PCB with fanout

Metallisation is V (30 nm) + Au (1 µm)
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GaAs. Irradiation results. CCE

Results: CCE dropped to about 5% from ~50% after 1.5 MGy

this corresponds to signal size of about 2000 e-

No saturation, signal could be increased with bias voltage
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GaAs. Irradiation results. Dark current

Dark current increased ≈ 2 times (from 0.4 to 1 µA @ 200V)

Signal is still visible for an absorbed dose of about 1.5 MGy
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Sapphire

Single crystal Al2O3 grown by Czochralski process

Large scale production: crystals up to 500 kg

Positive: Cheap, large area, wide bandgap

Negative: small response to MIPs (~2200 eh pairs per 100 um)

Low charge collection efficiency (~5%) => signal from MIP in

typical 500 um detector ~500 e
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Sapphire

Response measured in current mode.

Good radiation hardness

Dark current ~pA before and after

irradiation 
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Possible application
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THANK YOU 
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