

Radiation hard sensor materials for forward calorimeter

K. Afanaciev on behalf of FCAL collaboration

FCAL Workshop Tel-Aviv 2016

Scope and purpose of the talk

Solid state detectors with direct electrical signal readout (not scintillators, gas or liquid detectors)

Silicon, GaAs, Diamond and Sapphire

Detector functions
As a solid state
Ionisation chamber

Charge carriers are
Generated by a particle
And then drift in a E field
Signal is readout by an
amplifier

Radiation damage

Particle knocks atoms out of the crystal lattice – introduces defects These defects could act in different ways

Silicon. Motivation and who is doing it

Expected radiation load
For silicon detectors
HL-LHC 3ab⁻¹
Neutron Fluence
1.5x10⁻¹⁶
Dose ~ 5 MGy

Rough estimate

FCC 3ab⁻¹: Neutron Fluence 3x10⁻¹⁶, Dose ~ 10 MGy

FCC 30ab⁻¹: Neutron Fluence 3x10⁻¹⁷, Dose ~ 100 MGy

Silicon. Motivation and who is doing it

RD 50 collaboration (www.cern.ch/rd50/) since 2003

> 250 members working on radiation hard silicon detectors

Goal => Silicon detectors able to withstand fluence upto 10¹⁶ 1 MeV neutron equivalent per cm⁻²

+ A working group WODEAN (Workshop on Defect Analysis in Silicon Detectors)

RD 50 mostly study strip and pixel detectors Hadronic irradiation

Silicon. Results overview. Dark current

Dark current rises linearly with the fluence

This means for 10x10x0.3 mm detector Idark ~ 1 mA @ room temp. => Needs cooling to at least -20C and up to -50C (still uA currents)

Silicon. Results overview. CCE

Signal is visible after 10¹⁶ n/cm⁻², but V_{fd} goes into kilovolt range Needs at least 1kV bias (no full depletion) and cooling

Motivation. Very Forward Region

EM calorimeter with sandwich structure:

30 layers of 1 X_0 , 3.5mm W and 0.3mm sensor, Moliére radius $R_M \approx 1$ cm Angular coverage from 10 mrad to 43 mrad ,

Max expected dose about 1 MGy per year of operation (3TeV CLIC, ~0.5 ILC). Background from beamstrahlung-generated pairs. Mostly EM, energy ~ 10 MeV. Need for a radiation hard material, cooling is difficult.

Investigated materials

Gallium arsenide (GaAs),
Polycrystalline CVD (chemical vapour deposition) Diamond (pCVD)
Single crystall CVD Diamond (sCVD)
Sapphire

		GaAs	Si	Diamond	Sapphire
	Density	5.32 g/cm^3	2.33	3.51	3.98
•	Pair creation E	4.3 eV/pair	3.6	13	24.6
•	Band gap	1.42 eV	1.14	5.47	9.9
•	Electron mobility	$8500 \text{ cm}^2/\text{Vs}$	1350	2200	>600
	Hole mobility	$400 \text{ cm}^2/\text{Vs}$	450	1600	-
•	Dielectric const.	12.85	11.9	5.7	9.3-11.5
•	Radiation length	2.3 cm	9.4	18.8	
	Ave. $E_{dep}/100 \mu m$				
	(by 10 MeV e ⁻)	69.7 keV	53.3	34.3	
	MPV pairs/100 μm 15000		7200	3600	2200
	Structure	p-n or insul.	p-n	insul.	insul.

pCVD Diamond

• pCVD diamond:

- radiation hard
- Good properties : high mobility, low $\varepsilon_R = 5.7$, thermal conductivity
- availability on wafer scale

• Samples investigated:

- Element Six (ex-DeBeers)
- $-1 \times 1 \text{ cm}^2$
- 200-500 μm thick
 (typical thickness 300μm)
- Ti(/Pt)/Au metallization

The only problem is that there is only one detector-grade material manufacturer

Price is still too high for large-scale application

pCVD Diamond. CCE

A number of samples were irradiated (10 MeV electrons)

10 MGy for diamond roughly correspond to 10¹⁶ n/cm⁻² for Si

pCVD Diamond. Dark current

E6_4p

E6_4 sample from Element 6, 500 μm

Signal decreased by ~ 80 % after absorbed dose of about 7 MGy

Slight increase in dark current, but still in pA range

600

sCVD Diamond detector

Single crystal CVD (chemical vapour deposition) diamond CVD growth on top of diamond substrate

- + Low defect content, very good detector properties
- Small area (up to 5x5 mm), very high price

Sample produced by Element Six

5x5 mm, 320μm thickness initial charge collection efficiency about 100% (CCD 320μm)

sCVD Diamond. Irradiation results

Irradiation to 10 MGy CCE dropped to 10% of the initial value

No visible annealing in 18 month

No significant increase in the dark current after the irradiation (still in pA range)

Diamond detector application. CMS beam monitoring

GaAs Detector

Supplied by FCAL group at JINR Produced in Tomsk

Sample is semi-insulating GaAs doped by Sn (shallow donor) and compensated by Cr (deep acceptor). This is done to compensate electron trapping centers EL2+ and provide *i*-type conductivity. Charge transport by electrons only. CCE ~ 50% by default.

Sample works as a solid state ionisation chamber Structure provided by metallisation (similar to diamond) 500 µm thick detector is divided into 87 5x5 mm pads and mounted on a 0.5mm PCB with fanout Metallisation is V (30 nm) + Au (1 µm)

GaAs. Irradiation results. CCE

Results: CCE dropped to about 5% from ~50% after 1.5 MGy this corresponds to signal size of about 2000 e

No saturation, signal could be increased with bias voltage

Dark current increased ≈ 2 times (from 0.4 to 1 μA @ 200V)

Signal is still visible for an absorbed dose of about 1.5 MGy

0

-2

Sapphire

Single crystal Al₂O₃ grown by Czochralski process

Large scale production: crystals up to 500 kg

Positive: Cheap, large area, wide bandgap

Negative: small response to MIPs (~2200 eh pairs per 100 um)

Low charge collection efficiency (\sim 5%) => signal from MIP in

typical 500 um detector ~500 e

500 µm sample, MIP signal

600

800

1000 Bias, V

Sapphire charge collection efficiency

Courtesy S. Schuwalow

400

200

Sapphire

Irradiation of sapphire samples

Response measured in current mode.
Good radiation hardness
Dark current ~pA before and after
irradiation

Possible application

THANK YOU