

BeamCal readout - proof of concept and some extras

Angel Abusleme

September 19, 2016

29th FCAL Workshop

Outline

Recent activities at PUC around Beamcal

Configurable front-end proof-of-concept

And some extras:

- The Bean V2 testing
- BeamCal specifications revisited
- Future chip design for BeamCal

CONFIGURABLE FRONT-END PROOF-OF-CONCEPT

Motivation

- BeamCal detector segmentation still under study
- Chip cannot be optimized without a definite design
 - Pixel size impacts capacitance, speed and noise
- What if the front-end chip could be designed to accommodate different pixel sizes?

Noise and detector capacitance

Readout noise is a strong function of detector capacitance C_D

29th FCAL Meeting

Configurable front-end concept

29th FCAL Meeting

Configurable front-end: Heisenberg Chip (0.5µm)

- Charge amplifier split
 - into parallel slices
 - Configuration through switches
- Feedback capacitance
 is configurable too
 - is configurable, too
- Chip includes pulser and buffer

Front-end slice design

Slice

Slice layout

In future revisions, slices can be connected by abutment

Chip layout and micrograph

Test setup – Block diagram

Test setup – Board design

Board is placed on top of FPGA

Right now board is being populated... Preliminary results are promising... Full results should come soon...

THE BEAN V2 TESTING

The Bean V2: Block diagram

The Bean V2: CSA

The Bean V2: Configurable filter

Bean V2 Chip (180nm CMOS process)

Test setup picture

Preliminary test results:

Weighting function measurement

• Still some timing issues...

BEAMCAL SPECIFICATIONS REVISITED

29th FCAL Meeting

Dual hits per BX?

Dual hits per BX?

~25ns later, BeamCal is hit by collision results • Large deposition, noise is not a problem Physics readout Physics and calibration within same BX 200ns 100ns Interesting idea. Now is this possible? 1st conical BP BeamCal LumiCal Sensitive volume Pump LHCal ECal ring Flange & [Borrowed from Sergej slides] bellow

Electronics for dual hits

- Digitization
 - Very fast ADC, or
 - Analog memory
- Fast analog electronics
 - Switch between modes really quick, or
 - Very large dynamic range
 - Not easy for calibration (only 25ns peaking time)
 - Need huge current on input device!!!
 - Or some trick instead (e.g. negative capacitance?)

A first approach: Output mux

Another idea: time allocation

Yet another, much simpler idea

- Beam halo is really convenient for calibration
 - MIP behavior, constant energy deposition per particle
- Over time, beam halo should cover the whole detector area
- Then we can measure the deposited energy for each pixel many times
- This allows noise reduction by oversampling
 - This lowers the stdev of measurements
- But this doesn't work if noise is way too large or if multiple halo particles hit pixels
 - Cannot tell how many particles hit a pixel in a certain event
 - This is particularly true if beam halo is too dense...

FUTURE CHIP DESIGN FOR BEAMCAL

29th FCAL Meeting

Future plans

- Things are moving slowly...
 - No luck with funding
 - Now waiting for results from four proposals
 - No luck so far with CADENCE
 - No luck with CERN MPW runs
 - No luck with new students
- But I have interesting news
 - I just joined a project that may have some \$\$...
 - I may choose a process that does not require CADENCE
 - I will design the electronics myself, period
 - If I had decided this 2 years ago...

Other processes?

- TSMC 250nm: many EDA tools, not too expensive (USD ~\$10.000/25mm²)
- ON Semi 350nm: many EDA tools, cheap (USD ~\$1000/mm²)
- Radiation tolerance could be a problem...
 - But new BeamCal structure places electronics under lower radiation dose...
 - How bad is 350nm?

On radiation tolerance

[G. Anelli Thesis, 2000]

Figure 2.8: Threshold voltage variation per Mrad dose as a function of the oxide thickness. The points are taken from measurements done in the Microelectronics Group at CERN [Ane97] (except for four points, whose data are taken from [Osb98]). The legend gives the minimum gate length for the technologies in microns. It is also shown the $\Delta V_{th} \propto t_{ox}^{2}$ trend (solid line).

Conclusion

- Specs for BeamCal front-end? To be discussed...
- Readout board? To be discussed...
- Dual hit per BX? To be discussed...
 - Negative capacitance for noise reduction? To be discussed...
 - Time allocation scheme? To be discussed...
 - Multi sampling noise reduction? To be discussed...
- New process for chip design? To be discussed...

Thanks for your attention