Test beam experience with partially instrumented AHCAL prototypes

LCWS16 at Morioka 6.12.2016 Yuji Sudo (DESY) for the CALICE collaboration

CALICE AHCAL

• A highly granular hadron calorimeter for ILD

Ethernet uplink, clock, control

slah

10cm

10cm

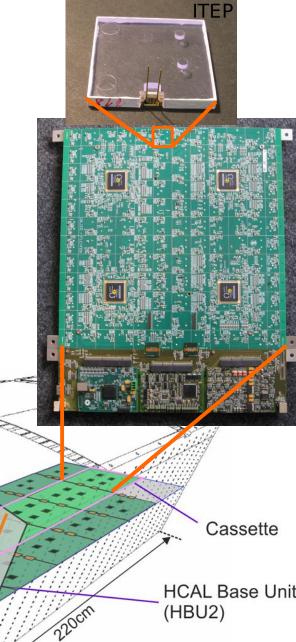
82cm

support

cabling

ECAL

- Iron (or Tungsten) absorbers
- 3x3cm² plastic scintillator tiles
- Readout by individual SiPMs

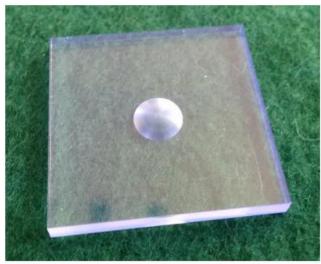

4m

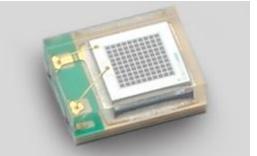
HCAL

Magnet

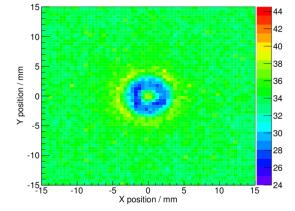
- 8 million channels (with endcaps), 50k PCBs

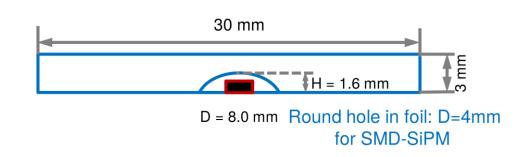
\rightarrow Readout fully integrated into the layer


DAQ interface boards DIF, CALIB, POWER₂ LDA (for 2x48 layers)

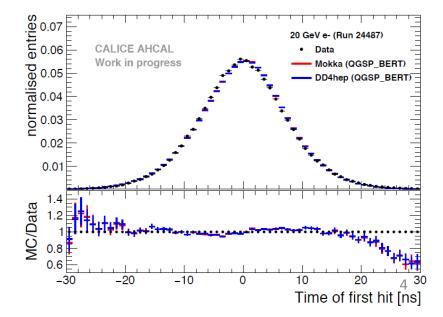

CALICE AHCAL

- A highly granular hadron calorimeter for ILD
 - Iron (or Tungsten) absorbers
 - 3x3cm² plastic scintillator tiles
 - Readout by individual SiPMs
 - 8 million channels (with endcaps), 50k PCBs


→Readout fully integrated into the layer


- New design
 - Surface mount design SiPMs
 - \rightarrow easy assembly, uniform response
 - Positive experience at CERN SPS 2015
 - Used in DESY test beam campaign 2016

MPPC: \$13360-1325PE (HPK)

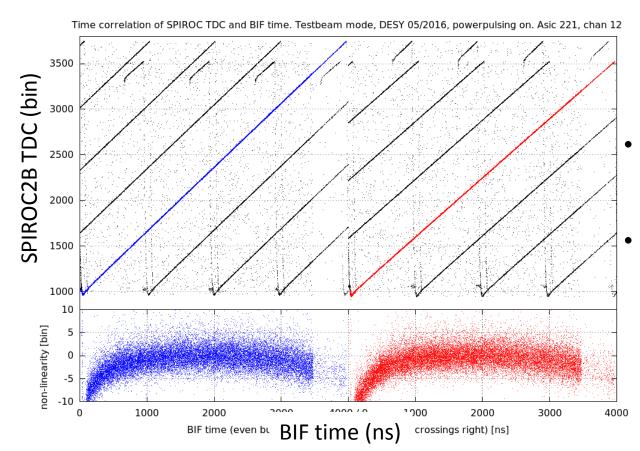


Test beam data analysis for CERN SPS 2015

- test beam campaigns in 2015 at CERN SPS
- * muon runs for MIP calibration
- * electron runs for EM shower
- * pion runs for hadronic shower
- Ongoing works
- detailed study on amplitude and timing to electron and pion beam comparing with data and MC in Mokka and DD4HEP
- ✓ simulations for time of hit are in good agreement with data

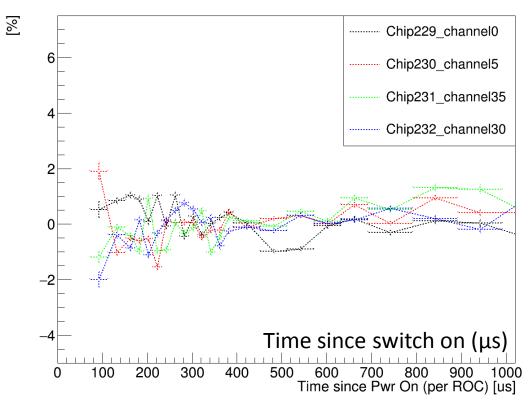
realistic steel absorber structure with cooling system for test beam

CALICE AHCAL technological prototype Test beam campaigns in 2016 at DESY


- Toward full-scale ILD AHCAL, important tests are performed
- Integration of new electronics and DAQ, monitoring
- Testing new AHCAL modules with surface mount tiles
- using EUDAQ1.6 for run control and data taking
- **BIF** (Beam InterFace) module to record beam timestamp
- AHCAL online monitoring within DQM4HEP framework
- latest surface mount type SiPMs and tiles on HBU4
- data taking with **power-pulsing** operation
- common running with pixel telescope

May : first test of BIF with beam, power-pulsing
July-August : 15 layer small stack, power-pulsing
October : common running with telescope
December : collect more beam data with telescope

AHCAL test beam in May 2016 at DESY


- We had 2 weeks of beam time at DESY.
- many tests for BIF, DAQ, monitoring and new SMD module
- BIF successfully integrated and tested with beam
- stable response under power-pulsing operation

- Correct correlations are blue and red lines in the main diagonals.
- black lines come from additional particles in the same BX interval.
 - beam structure (1MHz) of DESY TB

AHCAL test beam in May 2016 at DESY

- We had 2 weeks of beam time at DESY TB22, 2nd-14th of May.
- many tests for BIF, DAQ, monitoring and new SMD module
- BIF successfully works with beam
- stable response under power-pulsing operation

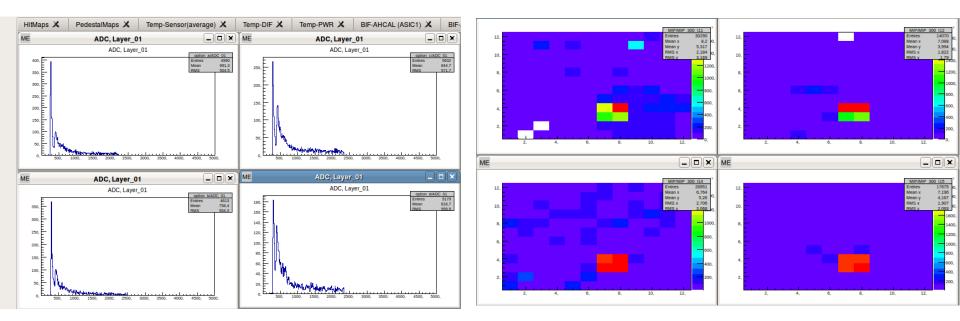
Deviation of MIP

- running stably
- stable MIP response after 150 µs (consistent with lab results)

New small AHCAL prototype July 2016

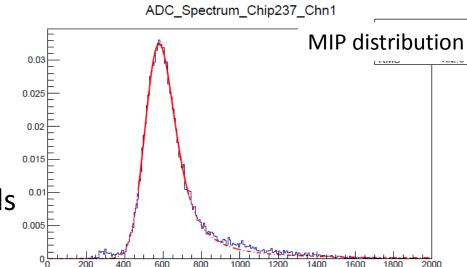
- 15 good, low-noise layers for electromagnetic shower
 - * 6 brand new HBU4 with new generation MPPCs (HPK)
 - * 9 older but still good HBU3
- demonstrate response to 1-5 GeV electron power-pulsing performance for a calorimeter system

AHCAL test beam in July-August 2016

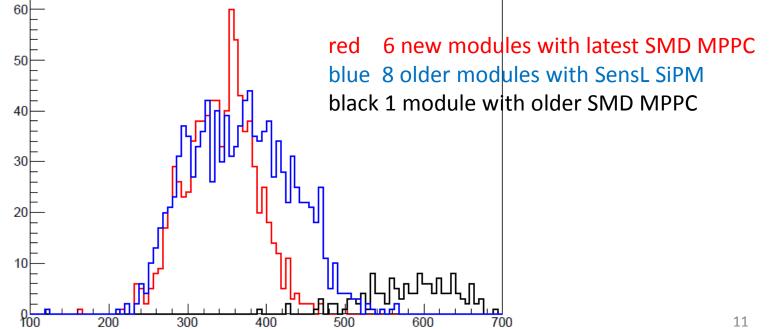

- We had 2 weeks of beam time at DESY
- before the beam time, commissioning was done for all HBUs
- setup: 15 layers of 1 HBU

 * 6new HBU4_SMD + 1 HBU3_SMD + 8 HBU3 SensL in tile
 * new interfaces for all layers for power-pulsing
 *
- 1st week: Calibration run
 - * integration of new HBUs and interfaces* MIPs
- 2nd week: EM showers run
 - * small steel absorber stack
 - * energy scans 1 -5 GeV
 - * 3.5 days for no power-pulsing
 - * 1 day for power-pulsing with test beam mode
 - * 2.5 days for power-pulsing with nearly ILC time structure

EM shower

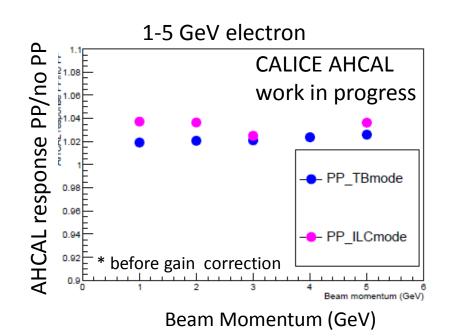

Online data quality monitoring

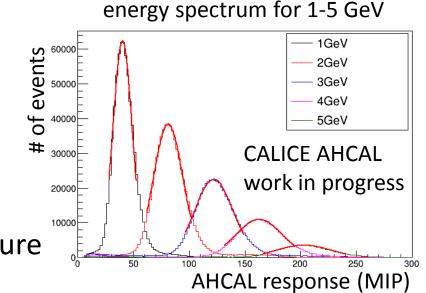
- New online monitoring (DQM4HEP)
 - Developed by Remi Ete et al (Lyon, Gent)
 - Framework for general use by any detector
 - Adopted by Tom Coates (Sussex, UK)
 - Icio format raw data

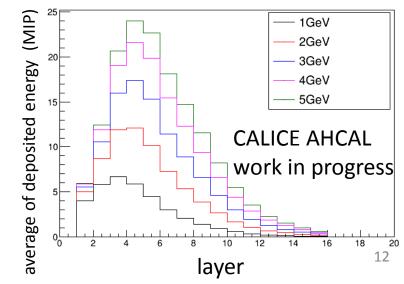


MIP calibration

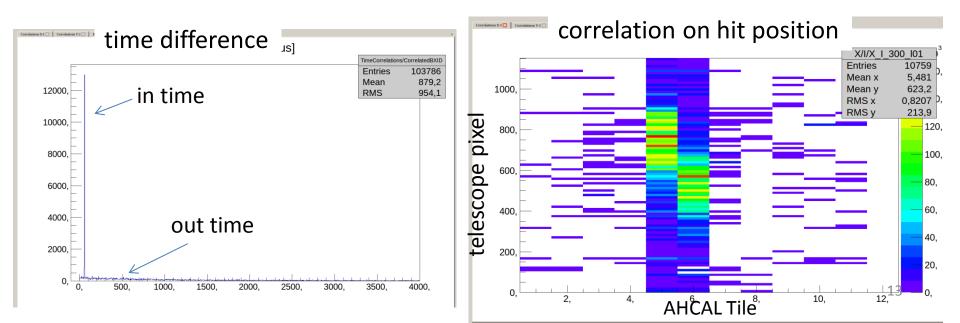
- Quality of new HBUs very good
- All 864 channels operational.
- 863 show nice MIP spectrum
- only 6 dead cells out of 1152 cells on old HBUs



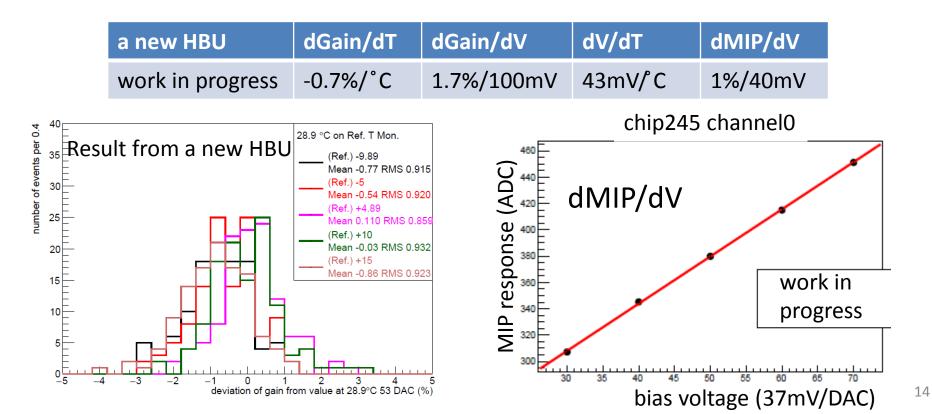

summary of MIP response in ADC unit


AHCAL response to electron beam

- Beautiful energy spectrums
- Clear EM shower development
- same behavior with no power-pulsing power-pulsing with test beam mode power-pulsing with ILC timing structure



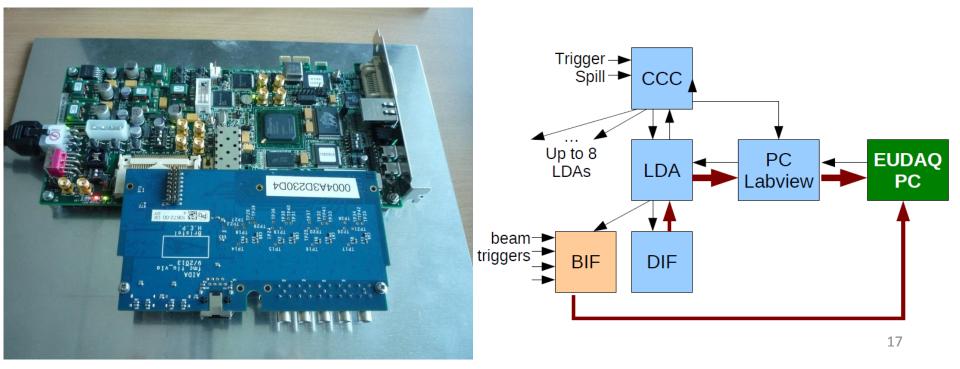
longitudinal shower shapes


AHCAL test beam in October 2016

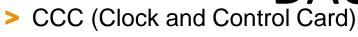
- Common running with other detector system
- AHCAL runs with EUDET pixel telescope in synchronization
- observed correlations
 - timestamp of telescope trigger AHCAL hit time (in BXID)
 - telescope hit position vs. AHCAL tile
- next TB is scheduled in 12th-18th of December 2016 (coming soon!)
 - much more statistics

SiPMs gain and response to MIP

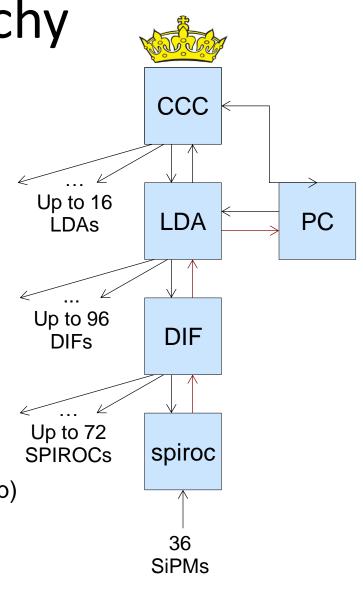
- toward the gain compensation on temperature during test beam
 - * measure gain dependence on temperature and bias voltage
 - averaging the result from all SiPMs on HBU (single voltage setting on a HBU)
 - * Testing temperature compensation on SiPMs gain
 - ightarrow Gain is kept within 1% RMS for temperature ranging 20 to 45 degrees
 - * measure dependence of MIP response on bias voltage at DESY TB in Oct. 2016


Summary

- Toward full-scale ILD AHCAL, important tests are performed
- Integration of new electronics and DAQ (BIF, power etc.)
- commissioning procedure is simplified by surface mount tiles and new generation SiPMs
- new design 6 HBUs are successfully tested with electron beam
- beautiful response of 15 layer small AHCAL to 1-5 GeV electron beam
- successfully operated in Power-pulsing mode
- common running with pixel telescope

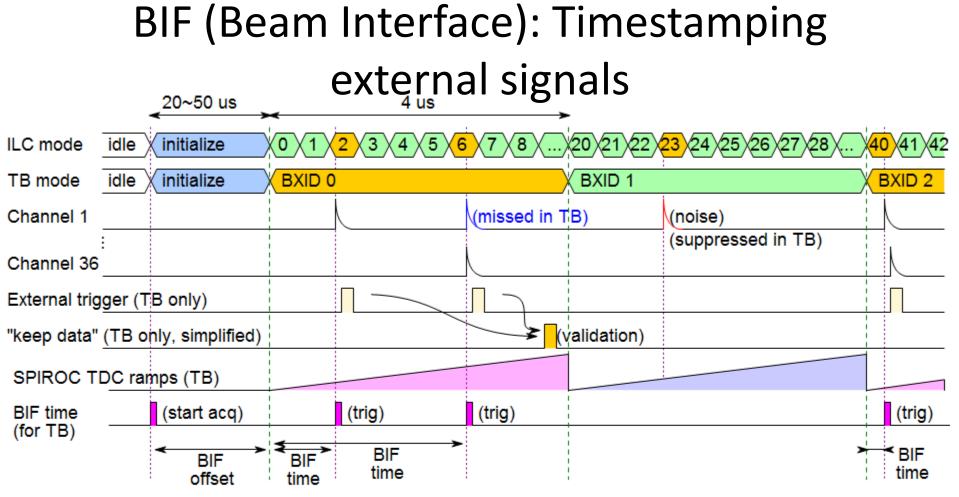

Backup

BIF: Beam InterFace


- Timestamping external signals
- Modified firmware of the AIDA mini-TLU
 - Receives AHCAL clock
 - Knows AHCAL fast commands from HDMI
- Records timestamps and start&stop of acquisition
- acquisition is gated (=records only when AHCAL active)
- Implemented in the "slave mode" acts like another LDA/DIF

DAQ Hierarchy

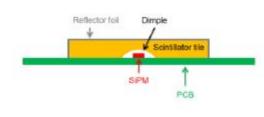
- Provides master clock
- Synchronizes all DIFS
- Starts and stops the acquisition according to the spill level and readiness of all DIFs
- Distributes trigger validation
- LDA (Link Data Aggregator)
 - Merges DIF readout packets
 - Does some decoding, adds headers
 - Send the packets over TCP
- > DIF (Detector InterFace)
 - Controls the ASICs
 - Readout the data from all ASICs
 - Sends the data to LDA
- SPIROC 2b (SiliconPM Integrated Read Out Chip)
 - ASIC by Omega, SiGe 0.35 um, 32 mm²
 - Reads out 36 SiPMs
 - Has 16 memory channels

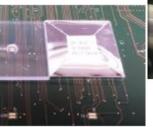


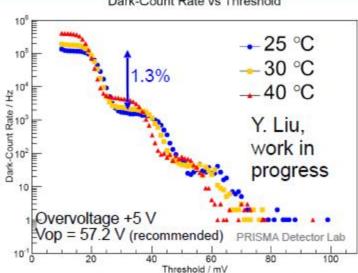
DAQ Challenges

- > We want a DAQ, that scales to the ILD calo and will fit the ILC timing
- > We need the DAQ for beam tests, now!
 - But with completely different timing requirements...

	ILD	TB CERN SPS	DESY
Spill	1 ms collision 199 ms idle	~2*5 s spill ~40 s idle	Always on
ROC/spill	1	many	
Event rate	~ MHz	10~100 kHz	~10 kHz
Trigger	None (auto)	Auto + validation	
Cooling	Passive	Don't care	
Power pulsing	Obligatory	Not needed	

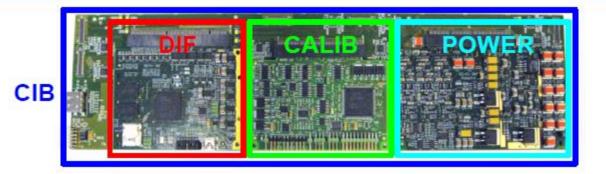



- > BIF and AHCAL run the same 40 MHz clock => everything synchronous
- > BIF "time": Timestamp difference from the current BX start
- > Where the BXID 0 starts? The BIF offset has to be found and calibrated
 - Cable lengths
 - Powerpulsing startup delay
- More triggers in 1 BXID => correlation artifacts
 - Case for the DESY beam: up to 4 triggers in BXID in TB mode


Towards mass production

decided which option to follow:

- recent improvements in SiPM technology:
 - improved sample uniformity .
 - dramatically reduced dark rate and pixel-to-pixel cross talk
 - in AHCAL conditions noise-free .
- > new tile design with surface-mount SiPMs
- > mass assembly with pick-and-place machine done
- > pre-series of 1000 MPPCs ordered
- > for the pre-series: use BC408 scintillator, cut and polished



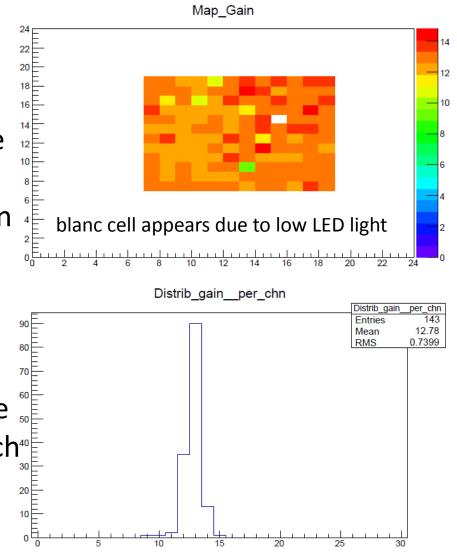
Dark-Count Rate vs Threshold

New Electronics 2016: Interface boards & BIF

new interface boards:

> DIF:

- more modern FPGA
- > POWER:
 - reduced LV (6 \rightarrow 4 V) for reduced heat
 - capacitor bank for power pulsing
 - software adjustment of SiPM bias voltage
- > CIB:
 - additional capacitors and protection resistors for power pulsing
- > new Beam Interface (BIF)
 - time-stamp external signals (trigger, cherenker)



Commissioning for the TB on July 2016

- All HCAL modules are tested in climate chamber (25°C) one by one before the test beam.
- hold scan, preamplifier settings gain measurement with LED
- new surface mount MPPCs on modules show quite uniform gain
 older modules are also good.
- → no cell-by-cell adjustment anymore $\frac{50}{50}$ We can set single bias voltage for each $\frac{30}{20}$ module.

New small prototype July 2016

- 6 new HBUs with surface-mount tiles
- new generation MPPCs (HPK)
- We have built small prototype for electromagnetic shower together with already existing 9 good HBUs
- demonstrate response to 1-5 GeV electron

power-pulsing performance for a calorimeter system

