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=> would removal of antiDID endanger
one of our key advantages?



Overview of (potential) effects on Physics

beam polarisation
pair background
- forward calorimeters
- hermeticity
- tracking performance
- “random hits” => pattern recognition, eff./pur. of track finding

- real tracks => additional source of background



Incoming beams not parallel to
solenoid field:

spin precession - longitudinal
polarisation changes:

only solenoid: 0.05%

with antiDID: 0.6%

vertical “kick” on beam

=> g(y) at IP increases by factor
3-4

(only solenoid, 50 with antiDID)
=> “anti-solenoids” required

Anti-solenoids will eliminate spin
precession at the same time!

(Alternative: skew quadrupoles -
would be bad for polarisation!)

Beam Polarisation and Crossing Angle & antiDID
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If luminosity is maintained

via anti-solenoids, then
polarisation is fine as well!




Palr Background and AntiDID

Effect of magnetic field:

high-energetic particles slightly curve around B
field, but keep polar angle given by their
momentum

low-energetic particles curl up tighly and “follow’
the B field lines

Pair background:
huge amount of low-energetic particles
very few with higher energy
Impact of antiDID:
guide majority of pairs into outgoing beampipe

guide backscatter to back IP inside the
beampipe - instead of straight into VI X!

conceptual pictures!




2hysics with missing four-momentum



low delta-M SUSY: e.qg. stau’s

The Physics:
stau pair production
Signature:

T T + missing energy

The Background:
two-photon events

Signature:

T T+ missing energy
(1f electrons are not tagged)

i.e. mimic SUSY event
[V. Drugakov,
O ECFA LC2005]

- e'e” in BP: cut on TT acoplanarity
- e hits BeamCal: electron veto is vital



Palr background &

BeamCal (2005,

R hominal)

Veto Efficiency

head-on

~ 14mrad with antiDID
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Palr background &

BeamCal (2005, RDR nominal)
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Conclusion in 2005:
vy background for
stau search increases
by factor ~ 8.5
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... and from a stau study in 2004

[Berggren et al hep-ph/0406010]
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10

crossing-angle without
antiDID: larger blind area
in BeamCal

yy background 7-8 orders
of magnitude above signal

part of phase space can
only be identified by
BeamCal veto
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... and with IL
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D 2009 [Bechtle et al Phys.Rev. D82 (2010) 055016, Berggren 1308.1461]

10° - with parametrised BeamCal
response from full sim with pair
102 background (14mrad, antiDID)

gamma-gamma bkg: fake missing
pt if beam electron goes down the
iIncoming beam pipe - or not

visible above pair background!

10

“grey band” similar to what SiD calls
“plug regiOn”

more background => grey band turns
black => can’t use this kinematic region

loose low-delta-M region (at diagonal)
=> loose complementarity with LHC

10



P, miss /0.5 GeV

... and with IL
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10° - with parametrised BeamCal
response from full sim with pair
102 background (14mrad, antiDID)

gamma-gamma bkg: fake missing
pt if beam electron goes down the
iIncoming beam pipe - or not

visible above pair background!

10

“grey band” similar to what SiD calls
“plug region”

more background => grey band turns
black => can’t use this kinematic region

loose low-delta-M region (at diagonal)
=> loose complementarity with LHC
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WIMP Dark Matter

model-independent dark matter searches using mono-
photon signature ot Y

complementary to LHC, direct detection, indirect detection
larxiv:1604.02230]

backgrounds: e
vv +(n)y: reduced by 1/100 with P=(+80%,-30%)

rad. Bhabhas: crucially depends on hermeticity

X

A (GeV)

m, (GeV)



WIMP Dark Matter

model-independent dark matter searches using mono-

photon signature ot v Y

complementary to LHC, direct detection, indirect detection
larxiv:1604.02230]

backgrounds: -
vv +(n)y: reduced by 1/100 with P=(+80%,-30%)

rad. Bhabhas: crucially depends on hermeticity

Profile Likelihood

10°F
ISR —
” 2
S
_______________________________________________________ <
1 i 107 ¢
WI M Ps \“‘ Bhabha A <MAX[3m, , 300 GeV]
(+soft activity) __. (+soft activity)
. | 2

X1 m, (GeV) 1



WIMP Dark Matter

model-independent dark matter searches using mono-
photon signature ot Y

complementary to LHC, direct detection, indirect detection
larxiv:1604.02230]

backgrounds: o >
X
vv +(n)y: reduced by 1/100 with P=(+80%,-30%)
rad. Bhabhas: crucially depends on hermeticity
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Shabha veto iIn BeamCal
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Eﬂ:eC't on Wl M B, S? Missed Bhabha events in BeamCal

-

| g
no full sim of new forward region yet Zé ; Hm
=> |look at “effective” Oeii: assume 100% ~_ 10' ‘ BeamCal
efficiency above and 0% below that angle, : 3 400m_
such that Bhabha background is the same ; i further in
iIn DBD configuration z 1 _ current
study effect of varying Beff : H ILD
preliminary estimate of impact (old MC): L '1'0' '2'0' — '3'0' — '4'0' = '5'0' bo“_‘ with
several 100 GeV 0, [mrad] antiDID!
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Physics with low-pt tracks



Near-degenerate New Particles (e.g. Higgsinos)

Events/0.1 GeV

“blind spot” of LHC
=> |LC direct discovery potential

ILC precision spectroscopy allows
determination of gaugino masses
even If in multi-TeV regime

visible part of event:

very few, very soft tracks
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Near-degenerate New

“pblind spot” of LHC

=> |LC direct discovery potential

ILC precision spectroscopy allows

Particles (e.g. Higgsinos)

Higgsino signal event in ILD
(w/o pair background)

Events/0.1 GeV

Important input for

| A ,

. . . \ I I }
determination of gaugino masses 3 | f | | H **-__4 ﬂ “ (
even if in multi-TeV regime . \ \ Vo

. |
visible part of event: |
very few, very soft tracks
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next generation pp
collider!




Tracking in presence of pair background

VTXD types DBD VTX Fast CMOS VTX Tdeal VIX (1 BX)
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Tracking in presence of pair background
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Outlook & Conclusions



For MC production with new L* we need:

new forward region design and implementation
new detailed maps of main and fringe fields for:
- realistic solenoid

- QDO (+ potentially more of beamline)

- anti-solenoids

- antiDID

new simulation of pair background for each
centre-of-mass energy

+ occupancies / radiation doses
- realistic tracking efficiencies / purities
- realistic BeamCal response

study of all field inhomogeneities on tracking,
alignment, ...

18
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study of all field inhomogeneities on tracking, for mass

alignment, ...

production of
physics samples!
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For MC production with new L* we need:

new forward region design and implementation

new detailed maps of main and fringe fields for:

- realistic solenoid

Each of these tunable

+ QDO (+ potentially more of beamline) in magnitude!

- anti-solenoids
- antiDID

new simulation of pair background for each
centre-of-mass energy

overlay random set of
pair background tracks

- occupancies / radiation doses in mass production:
real progress wrt DBD

- realistic tracking efficiencies / purities
- realistic BeamCal response absolutely required

study of all field inhomogeneities on tracking, for mass

| production of
alignment, ... very important, but “stand-alone” study physics samples!




Conclusions

with antiDID: detector and physics performance profit a lot
- hermeticity, e.g. WIMPs, low-deltaM SUSY, ...

- low momentum signatures, e.g. Higgsinos, natural SUSY, ...

+ charm tagging... (n)ever tested with full pair background...”?

no antiDID: would hurt the physics case where it is most
complementary to LHC!

antiDID by far not the only source of B field inhomogeneity
(solenoid fringe, anti-solenoid, ...) => alignment, ExB etc in non-perfect
solenoid field needs to be understood anyway

Brett Parker: antiDID can be built at small cost (< 10% of coll)
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Conclusions

with antiDID: detector and physics performance profit a lot
- hermeticity, e.g. WIMPs, low-deltaM SUSY, ...

- low momentum signatures, e.g. Higgsinos, natural SUSY, ...

+ charm tagging... (n)ever tested with full pair background...”?

no antiDID: would hurt the physics case where it is most
complementary to LHC!

antiDID by far not the only source of B field inhomogeneity
(solenoid fringe, anti-solenoid, ...) => alignment, ExB etc in non-perfect
solenoid field needs to be understood anyway

Brett Parker: antiDID can be built at small cost (< 10% of coll)

=> no (fundamental) reason to remove the antiDID,
but good reasons to keep it !
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Sackup



Light, near-degenerate Higgsinos @ 500 GeV

observables:

- polarised cross sections for
charginos & neutralinos

- masses and mass differences
Mmain performance aspects:

ow momentum

P|D

nermeticity of forward region

completed studies:
H.Sert, SGV

H.Sert, Y.Voutsinas:
single aspects in full sim.

Open ISSUES:
- full analysis in full sim??
vy -> low p; hadron removal
- pair background
expected improvements:
- PIDTools
- Si tracking
- new yy -> low p; hadron simulation
current status:

- S.Sasikumar: yy -> low p; hadron
removal

- new student in Tokyo? (tbc)
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Mono-photons (yxy) @ 500 GeV

observables:
main performance aspect:

- hermeticity in forward region:
Bhabha veto

* energy scale and resolution for high-
energy photons

- systematics: beam energy spectrum

completed studies:
C.Bartels @ Lol, re-interpretation by A.Chaus

Open ISSues:

- suitable generator for radiative
Bhabha’s which works
efficienctly in signal region
(E>10 GeV photon in detector,
e+e- down the beam pipe)

- anit-DID ? L* 7

expected improvements:

- much better Bhabha veto from new
BeamCal reconstruction

current status: ongoing analysis based
on Whizard?2 + Mokka by M. Habermehl,
will need replacement eventually
T.Tanabe?

Missed Bhabha events in BeamCal
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Mono-photons (yxy) @ 500 GeV

observables: . expected improvements:
main performance aspect: + much better Bhabha veto from new
- hermeticity in forward region: BeamGal reconstruction
Bhabha veto +current status: ongoing analysis based
+energy scale and resolution for high- on Whizard2 + Mokka by M. Habermehl,
energy photons will need replacement eventually
T.Tanabe?

- systematics: beam energy spectrum

completed studies: very preliminary look at new L*: | 222!
C.Bartels @ Lol, re—interpretation O Bhabha bkg up by factor ~3 ﬁHHHHHHH
open issues: => impact on WIMP HHHH
- suitable generator for radiat Sl ey 10y S H
Bhabha’s which works 5 10% BeamCal
efficienctly in signal region 30 40cm
(E>10 GeV photon in detector, g further in
e+e- down the beam pipe) z 1L
£ current
- anit-DID 7?7 L* 7 ILD
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Magnetic Field Maps
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Plain solenoid Solenoid with DID
Realistic field maps (plus simplified quadrupoles)

Adrian Vogel ECFA ILC Workshop, Vienna, 2005-11-16




