

Occupancy Tolerances for VTX

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Auguste Besson

1

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Introduction

- Main question: which maximum occupancy can the VTX stand ?
 - Defeatist answer: impossible to answer today ⇒ should one surrender ?
 - Typical answer: ~1% occupancy max is mainly an educated guess
- Why ?
 - The expected rate depends on the accelerator/beam configuration and the geometry
 - > Expected rate: #hits/cm²/BX for a given layer (R, ϕ , Z)
 - > Beam: (time between bunch, Energy, luminosity, IR geom, antiDID option, etc.)
 - > Large uncertainties on beam background simulations
 - The occupancy depends on the detector design:
 - #hits/cm²/BX needs to be translated into a % of the pixels per read-out.
 - > Fast read-out in conflict with resolution & power consumption
 - > Technology (sensitive thickness, depletion)
 - > Read-out time & strategy, pitch, geometry
 - Estimate effects on detector performances:
 - > tracking efficiency, IP resolution, $b/c/\tau$ tagging performances
 - Depends on a combination of the above + algorithms (which are themselves strongly correlated to the detector design)
 - Finally estimate the effects on the physics measurement
- How to answer to this question without ambiguity ?
 - Define completely **Red + Orange + Purple + Pink** ⇒
- Still: what do we know today ?
 - We can explore the parameter space and the different options

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Reminder: ILD Vertex Detector requirements (DBD @ 500 GeV)

Physics: Mat. budget and granularity

 $\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu m.$ (a & b parameters)

- $\sigma_{R\phi} \sim 3 \ \mu m$ (pitch $\sim 17 \ \mu m$)
- $O(0.15\%X_0/layer)$
- Experimental constraints
 - Radiation hardness :
 - O(100 kRad) & O(1x10¹¹ n_{eq (1MeV)}) /yr
 - Occupancy (Beam background)
 - ~ 5 part/cm²/BX \Rightarrow few % occupancy max ?
 - Power dissipation : (Cooling)
 - ~ 50 mW/cm² \Rightarrow Power cycling, ~3% duty cycle
 - EM compliance and (μ) electronic safety Single Event Effect safety

higher mode beam wake field disturbance, etc.

- Layout (DBD geometry):
 - Long Barrel approach ($R \sim 16 \text{ mm} 60 \text{ mm}$)
 - 3 x double sided layers OR 5 layers

ILD Technical Task Forces Meeting, LAL November 7-8 2016

- Others constraints
 - Read-out & electronics
 - highly integrated read-out microcircuits
 - \succ high data transfer rate (no trigger)
 - Costs !
 - Large B field
 - ➢ Large Lorentz angle
 - Integration
 - > Routing for services
 - Fabrication reliability and flexibility
 - Mechanical integration: low mass, rigidity, heat conductive
 - ➢ Geometry: short or long barrel ?
 - Alignment: micron level capabilities needed
- reaching the specifications all together is the \Rightarrow real challenge
 - Auguste Besson

Reminder: DBD requirements and beyond

• Beam background (DBD) #Hits/cm²/BX with anti-DID

Layer	1	1 2 3		4	5	6	
0.5 TeV	6.3±1.8	4.0±1.2	0.25±0.11	0.21±0.09	0.05±0.03	0.04±0.03	
1 TeV	11.8±1.0	7.5±0.7	0.43±0.13	0.36±0.11	0.09±0.04	0.08±0.04	

• Occupancy

e.g. $17x17 \ \mu m^2$ pitch, cluster mult. ~5, 50 μ s read-out time @ 0.5TeV & @550ns Bunch sep.

> on Layer $1 \Rightarrow \sim 1 \% \Rightarrow$ easy to reach with no safety factor !

- Large potential variations (beyond B field and Radius)
 - No anti-DID option $\Rightarrow x \sim O(50\%)$? + L* configuration (beamcal+forward masks)
 - Inhomogeneity in z and ϕ ?
 - 1 TeV \Rightarrow +50% higher occupancy ?
 - Luminosity upgrades $\Rightarrow \sim x2$ higher occupancy ?
 - Large uncertainties on M.C. simulations \Rightarrow Safety factors needed (> x5)
- Reconstruction will benefit from lower occupancies
 - Reduced combinatorial to reduce fake tracks
 - Stand alone tracking capabilities
 - Low momentum tracks, VTX/Jet charge determination, c-tagging, etc.

⇒ Strong motivations to get reduced occupancy / faster read-out

ILD Technical Task Forces Meeting, LAL November 7-8 2016

cf. Christopher Milke @ LCWS 2015

The occupancy : squaring the circle

- How to decrease occupancy if needed ?
 - Increase read-out speed ?
 - > Enlarge pixel pitch \Rightarrow deteriorate spatial resolution (\Rightarrow 2-3 bits instead of 1 bit output ?)
 - \succ Elongated pixels \Rightarrow improved read-out speed while keeping resolution not degraded too much
 - Increase power consumption
 - Smaller pitch ?
 - ➤ More pixel to read ⇒ decrease read-out speed ⇒ less bunch time stamping
 - Effective if it compensates the number of superimposed BXs in one read-out
 - Decrease cluster multiplicity ? (BB tends to have large incident angles)
 - > Full depletion: helps a bit (marginal effect)
 - \blacktriangleright Decrease sensitive thickness \Rightarrow deteriorates S/N for a marginal effect.
 - > Suppress any chance to identify background with cluster shapes
 - > Increase S/N threshold \Rightarrow mitigate efficiency/resolution \Rightarrow marginal effect
 - Multiplicity pitch depletion angle relation => multi-parameter space
 - Increase inner radius ?
 - > Not really an option: Deteriorate $\sigma_{IP} \Rightarrow \sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 r_1)^2}$
 - Increase B field ?
 - > Not really a free parameter
 - Technology progress : the way to go ?
 - \succ e.g. smaller feature size \Rightarrow less power consumption, more memories in pixels, etc.
 - \succ Go lower than ~100 ns/row read-out time ? (more parallelism, asynchronous read-out, etc.)

ILD Technical Task Forces Meeting, LAL November 7-8 2016

$\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu m.$

Beam background features.

L.Cousin PhD

Sustainable occupancy rate ?

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Multiplicity discussion

Crucial parameter: pitch / epitaxial layer thickness 1 hit \neq 1 pixel fired Number of crossed pixels (pixel units) Typically 1-4 for perpendicular particles 18 \Rightarrow Depends on: Pitch = 3 x Epitaxial thickness (e.g. 60 & 20 u Threshold applied on discriminators Charge sharing Smaller for fully depleted technologies \succ Increases with sensitive thickness Incident angle effect 80 10 20 30 40 50 60 70 Incident angle (degrees) pitch N crossed pixels = (epi / pitch) x tan(θ) Pitch = 0.25 x Epitaxial thickness (e.g. 5 & 20 µm) Pitch = 0.5 x Epitaxial thickness (e.g. 10 & 20 µm) Pitch = 1 x Epitaxial thickness (e.g. 20 & 20 µm) Pitch = 2 x Epitaxial thickness (e.g. 40 & 20 µm) Pitch = 3 x Epitaxial thickness (e.g. 60 & 20 µm) epi e.g. : 20 μ m pitch, 20 μ m thickness, θ = 70° \Rightarrow 3 crossed pixels \Rightarrow ~ x3 occupancy θ

90

Beam background properties in the local frame of the sensors

0

Beam axis

20

ILD Technical Task Forces Meeting, LAL November 7-8 2016

(L.Cousin PhD, IPHC)

Auguste Besson

80

60

100

160

θ

180

θ [deg]

140

120

Beam background properties in the local frame of the sensors

Read-out strategies vs resolution/occupancy

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Typical occupancy rate (layer 1, with DBD rates)

Pixel pitch	σ _{sp}	Read- out Time / time resolut ion	Assumed average cluster multiplicity	Lumi Mode (bunch Per train)	BX time spacing	√s	Assumed Expected Background	Expected background with safety factor 5	Occupancy	remarks
(µmxµm)	μ m	(μS)	# pixels	B/train	ns	GeV	#hits/c	m²/BX	w.o./w safety	
17x17	~3	50	5	Baseline (1312)	554	500	6	30	8x10 ⁻³ / 4x10 ⁻²	DBD
17x17	~3	50	5	Upgrade (2625)	366	500	6	30	1x10 ⁻² / 6x10 ⁻²	Lumi upgrade
17x17	~3	50	5	1312	554	250	3	15	4x10 ⁻³ / 2x10 ⁻²	250 GeV
17x17	~3	50	5	2500	366	1000	10	50	2x10 ⁻² / 1x10 ⁻¹	1 TeV
17x17	~3	25	5	Baseline (1312)	554	500	6	30	4x10 ⁻³ / 2x10 ⁻²	DBD X 2 faster
22 x 22	~4	4	5	Baseline (1312)	554	500	6	30	1.5x10 ⁻³ / 8x10 ⁻³	Async. Read- out
25 x 25	~5	1 BX	3	Baseline (1312)	554	500	6	30	1x10 ⁻⁴ / 5x10 ⁻⁴	Bunch stamping
5 x 5	~1	1 train	6	Baseline (1312)	554	500	6	30	1x10 ⁻² / 6x10 ⁻²	Fine pixel BB tagging

Occupancy = $(\#hits/cm^2/BX) \times (mult > x (pitch)^2 \times (r.o.time) / (BXtime) \times safety$

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Conclusion

- Maximum occupancy
 - Large uncertainties on the background rate
 - A large safety margin is needed (x5-10 ?)
 - > Anti-DID should help but is a factor 2 reduction significant enough ?
 - R&D: push the read-out speed as high as possible while keeping the other parameters (cf SiD Strategy)
 - $\succ\,$ mat.budget, σ_{sp} power consumption
 - Room for new ideas: (technology combinations, background tagging, etc.)
- The 1% occupancy target
 - Based on educated guess and experience
 - needs to be assessed much more carefully \Rightarrow may turn to $10^{-3} 10^{-4}$ range
 - What is the lowest momentum tracking capabilities we want ?
- What should be done
 - Perform complete physics analysis
 - \succ with different superimposed background rates AND \neq $\sigma_{\rm IP}$
 - > Background with correlated hits on the different layers mandatory
 - > Ideally with different VTX configurations (read-out, resolution, geometry, etc.)
 - > Ideally with different tracking/vertexing algorithms
 - Need to test different kind of final states:
 - > high multiplicity final states (e.g. t-t-H) > Final states with $b/c/\tau$ (e.g. Higgs coupling)
 - Final states with forward tracks
 Final states with low momentum tracks (e.q. light higgsino)
 - Put occupancy requirements in balance with a & b parameters requirements

⇒ The final answer might take years from now

ILD Technical Task Forces Meeting, LAL November 7-8 2016

 $\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu m.$

(a & b parameters)

Backup for discussion

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Resolution and pitch discussion

ILC experimental conditions

Beam structure

- 5 trains/s of ~1300/2600 bunches
- 1 bunch every ~ 550/360 ns
- « Quiet time » of ~ 200 ms (between each train)
- Consequences on read-out
 - > No trigger, power pulsing, cooling
 - Possible read-out during beamless time

Beam background :

- Beamstrahlung: RMS energy loss:
 - $\succ \delta_{BS} \sim 1\%$ @ $\sqrt{s} = 250 \text{ GeV}$
- Drives occupancy :
 - Read-out speed, Inner radius
 - ▶ Physics cross section: ~ 1 evt/s
 ⇒ negligible
- Drives radiation level
 - Moderate (compared to LHC)
 - Vertex detector 1st layer:
 - O(100) kRad/yr & O(10¹¹) $n_{eq}(1MeV)/cm^2/yr$
- Required tiny flat bunches
 Required tiny flat bunches

ILD Technical Task Forces Meeting, LAL November 7-8 2016

- Bunches have electric space charge
- ⇒ particles deflected
- ⇒photons emissions
- \Rightarrow e⁺e⁻ pairs ("beamstrahlung")

ILC parameters (DBD)

			Baseline 500 GeV Machine			1st Stage	L Upgrade	Jpgrade E _{CM} U	
Centre-of-mass energy	$E_{\rm CM}$	GeV	250	350	500	250	500	A 1000	B 1000
Collision rate Electron linac rate Number of bunches Bunch population Bunch separation Pulse current	f_{rep} f_{linac} n_b N Δt_b I_{beam}	Hz Hz × 10 ¹⁰ ns mA	5 10 1312 2.0 554 5.8	5 5 1312 2.0 554 5.8	5 5 1312 2.0 554 5.8	5 10 1312 2.0 554 5.8	5 5 2625 2.0 366 8.8	4 4 2450 1.74 366 7.6	4 2450 1.74 366 7.6
Main linac average gradient Average total beam power Estimated AC power	G_{a} P_{boam} P_{AC}	MV m ⁻¹ MW MW	14.7 5.9 122	21.4 7.3 121	31.5 10.5 163	31.5 5.9 129	31.5 21.0 204	38.2 27.2 300	39.2 27.2 300
RMS bunch length Electron RMS energy spread Positron RMS energy spread Electron polarisation Positron polarisation	$\begin{array}{c} \sigma_z \\ \Delta p/p \\ \Delta p/p \\ P \\ P_+ \end{array}$	mm % % %	0.3 0.190 0.152 80 30	0.3 0.158 0.100 80 30	0.3 0.124 0.070 80 30	0.3 0.190 0.152 80 30	0.3 0.124 0.070 80 30	0.250 0.083 0.043 80 20	0.225 0.085 0.047 80 20
Horizontal emittance Vertical emittance	$\gamma \epsilon_x \\ \gamma \epsilon_y$	µm nm	10 35	10 35	10 35	10 35	10 35	10 30	10 30
IP horizontal beta function IP vertical beta function	$egin{smallmatrix} eta_{\mathbf{x}}^{*} \ eta_{\mathbf{y}}^{*} \end{split}$	mm mm	13.0 0.41	16.0 0.34	11.0 0.48	13.0 0.41	11.0 0.48	22.6 0.25	11.0 0.23
IP RMS horizontal beam size IP RMS veritcal beam size	$\sigma^*_x \\ \sigma^*_y$	nm nm	729.0 7.7	683.5 5.9	474 5.9	729 7.7	474 5.9	481 2.8	335 2.7
Luminosity Fraction of luminosity in top 1% Average energy loss Number of pairs per bunch crossing Total pair energy per bunch crossing	$L \\ L_{0.01}/L \\ \delta_{BS} \\ N_{pairs} \\ E_{pairs}$	$ imes 10^{34} { m cm}^{-2} { m s}^{-1}$ $ imes 10^{3}$ TeV	0.75 87.1% 0.97% 62.4 46.5	1.0 77.4% 1.9% 93.6 115.0	1.8 58.3% 4.5% 139.0 344.1	0.75 87.1% 0.97% 62.4 46.5	3.6 58.3% 4.5% 139.0 344.1	3.6 59.2% 5.6% 200.5 1338.0	4.9 44.5% 10.5% 382.6 3441.0
		½ gradio Initial Hi	ent ggs fact	ory B	Baseline	½ length (Option 1 ^e pha	Lumi ase) upgrade	1TeV	upgrade

ILD Technical Task Forces Meeting, LAL November 7-8 2016

Luminosity options

Luminosity Upgrades for ILC

Mike Harrison (Brookhaven), Marc Ross (SLAC), Nicholas Walker (DESY)

			TDR ref	Further options			
		baseline		upgrade			
Ecm	GeV	250	350	500	500	250	350
Rep. rate	Hz	5	5	5	5	10	8
Bunches/pulse		1312	1312	1312	2625	2625	2625
Total beam power	MW	5.3	7.4	10.5	21.0	21.0	23.5
AC power	MW	122ª	121	163	204	187	204
Luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.75	1.0	1.8	3.2	3.0	3.2

August 15, 2013

a) TDR baseline assumes 10-Hz mode for e+ production

ILC Operating Scenarios

ILC Parameters Joint Working Group

T. Barklow, J. Brau, K. Fujii, J. Gao, J. List, N. Walker, K. Yokoya

	\sqrt{s}	$\int \mathcal{L} dt$	L_{peak}	Ramp)			Т	T _{tot}	Comment	
	[GeV]	[fb ⁻¹]	$[fb^{-1}/a]$	1	2	3	4	[a]	[a]		ILC-NOTE-2015-068
Physics run	500	500	288	0.1	0.3	0.6	1.0	3.7	3.7	TDR nominal at 5 Hz	DESY 15-102
Physics run	350	200	160	1.0	1.0	1.0	1.0	1.3	5.0	TDR nominal at 5 Hz	IHEP-AC-2015-002
Physics run	250	500	240	0.25	0.75	1.0	1.0	3.1	8.1	operation at 10 Hz	KEK Preprint 2015-17
Shutdown								1.5	9.6	Luminosity upgrade	SLAC-PUB-16309
Physics run	500	3500	576	0.1	0.5	1.0	1.0	7.4	17.0	TDR lumi-up at 5 Hz	June 25, 2015
Physics run	250	1500	480	1.0	1.0	1.0	1.0	3.2	20.2	lumi-up operation at 10 Hz	

Table 7: Scenario H-20: Sequence of energy stages and their real-time conditions.

ILD Technical Task Forces Meeting, LAL November 7-8 2016 Aug

Beam background in various detectors (ILD)

	Subdetector	Units	Layer	Nom-500	Low-P-500	Nom-1000
 Boom Packground cimulation 	VTX-DL	$hits/cm^2/BX$	1	$3.214{\pm}0.601$	$7.065 {\pm} 0.818$	$7.124{\pm}1.162$
		,	2	1.988 ± 0.464	4.314 ± 0.604	4.516 ± 0.780
(Guinea Pig)	R = 16r	nm -	3	$0.144{\pm}0.080$	$0.332{\pm}0.107$	$0.340{\pm}0.152$
			4	0.118 ± 0.074	0.255 ± 0.095	0.248 ± 0.101
 Pair induced background 	R = 60r	nm	5	0.027 ± 0.026	0.055 ± 0.037	0.046 ± 0.036
Depends on 1/s	arm	2	6	0.024 ± 0.022	0.046 ± 0.030	0.049 ± 0.044
- Depends on vs	SIT	hits/cm ² /BX	1	0.017 ± 0.001	0.031 ± 0.007	0.032 ± 0.012
 20 % due to back scatterers 	FTD	hits/cm ² /BX	2	0.004 ± 0.003 0.013 ± 0.005	0.016 ± 0.005 0.031+0.007	0.008 ± 0.002 0.019+0.006
	112	mus/em/bh	2	0.008 ± 0.003	0.023 ± 0.007	0.013 ± 0.005
 Statistical error only 			3	0.002 ± 0.001	0.005 ± 0.002	0.003 ± 0.001
\triangleright systematics much higher			4	$0.002{\pm}0.001$	$0.007 {\pm} 0.002$	$0.004{\pm}0.001$
			5	$0.001 {\pm} 0.001$	$0.006 {\pm} 0.002$	$0.002{\pm}0.001$
			6	$0.001 {\pm} 0.001$	$0.005 {\pm} 0.002$	$0.002{\pm}0.001$
			7	$0.001 {\pm} 0.001$	$0.007 {\pm} 0.002$	$0.001{\pm}0.001$
	SET	hits/BX	1	5.642 ± 2.480	57.507 ± 10.686	13.022 ± 7.338
$\mathbf{x} \qquad \triangle \text{ILC-LOWP-1000}$			2	5.978 ± 2.360	59.775 ± 8.479	13.711 ± 7.606
10^{-1} ILC-LOWP-500	TPC	hits/BX	-	408 ± 292	3621 ± 709	803 ± 356
F_{eff} + TESLA-500	ECAL	hits/BX	-	155 ± 50	1176 ± 105	274 ± 76
$\overline{\mathbf{L}}$ \bigcirc ILC-NOM-1000	HCAL	hits/BX	-	8419 ± 649	24222 ± 744	19905 ± 650
SH 10 ⁻² A.Vogel PhD		Table 3.5.1: H (500 GeV and bers for the EC the vertex dete lation, the num the RMS of the (BX). - typica - Very s - Safet	Pair induc 1 TeV) and CAL and the ecor, the con- bers for the e hit distri- al value 5 hit sension y factor	ed backgrounds ad Low-P (500 Ge he HCAL are sum double-layer optio the single-layer op butions of the sin Le (layer cs/cm ² /BX tive to IR cor neede	in the subdetectors eV) beam parameter med over barrel and n has been chosen f otion differ. The err nulation of ≈ 100 bur 1) C geometry ed !	for nominal s. The num- endcaps. For or this simu- ors represent nch crossings
1 2 3 4 5		➤ a	it leas	t x 5 !		

ver 7-8 2016

VTX Layer

ILD-VXD design options

• ILD-VXD Options

- Achievable with our present knowledge
 - ≻L1 17x17 μm² ⇒ σ~<3μm & 32-64 μs
 - ≻ L2 17x102 μm² ⇔ σ~<5μm & 2-5 μs

- ightarrow L3-L6 25x51 μm² \Rightarrow σ~3.5 μm & 40 μs AND 27x29 μm² \Rightarrow σ~5 μm & 4 μs
- A la ALPIDE option
 - \succ 6 Layers with 22x22 μm² \Rightarrow σ~<4 μm & 5 μs
- Others

]

- > Outer layers with a la ALPIDE read-out (reduce power cons.)
- > Fine pixels ($4\mu mx4\mu m$) with delayed read-out
- cf. Y.Voutsinas studies (e.g. ILD optimization workshop)
 - Standalone tracking efficiency

	DBD VXD		Ideal VXD		Conservat	ive VXD	Ambitious VXD	
layer	σ _{sp} (μm)	σ _{time} (μs)	σ _{sp} (μm)	$\sigma_{_{time}}(BXs)$	σ _{sp} (μm)	σ _{time} (μs)	σ _{sp} (μm)	σ _{time} (μs)
L1/L2	3/6	50 / 10	3/ 3	1/1	4/4	4/4	3/3	1/1
L3 / L4	4/4	100 / 100	3/3	1/1	4/4	8/8	3/3	2/2
L5 / L6	4/4	100 / 100	3/3	1/1	4/4	8/8	3/3	2/2

⇒ Stay open to new ideas

Resolution (simulation model based on data)

