# Suppression IBF continually of the hybrid detector module

Huirong QI

#### Institute of High Energy Physics, CAS

November 3<sup>rd</sup>, 2016, ILC Detector Meeting, DESY

## Outline

## Critical challenges of CEPC-TPC Some activities and progress

## **CEPC** and its beam structure

**Circular e<sup>+</sup>e<sup>-</sup> Higgs (Z) factory two detectors**, 1M ZH events in 10yrs  $E_{cm} \approx 240$  GeV, luminosity  $\sim 2 \times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>, can also run at the Z-pole



- Baseline design in pre-CDR
- 48 bunches / beam
- Colliding every 3.6µs, continuously
- →Power pulsing not applicable

- Avoiding pretzel scheme to increase the flexibility and luminosity
- 196ns bunch spacing
- 48 bunches / train
- Duty cycle: 9.4µs/181µs

- 3 -

#### Compare with ILC beam structure

#### □ In the case of ILD-TPC

- Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
- Bunches time ~554ns
- Duration of train ~0.73ms
- Used Gating device
- Open to close time of Gating: 50µs+0.73ms
- Shorter working time
- In the case of CEPC-TPC
  - Bunch-train structure of the CEPC beam (one bunch every 3.63µs) or partial double ring
  - No Gating device with open and close time
  - Continuous device for ions
  - Long working time



**NO Gating device !** 

### **Critical challenge: Ion Back Flow and Distortion**

#### In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

#### In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron >10000 trains
- The ions have to be neutralized during the ~4us period continuously







Amplification ions@CEPC

- 5 -

#### Requirements of Ion Back Flow @CEPC

- **Electron:** 
  - □ Drift velocity ~6-8cm/us@200V/cm
  - **•** Mobility  $\mu \sim 30-40000 \text{ cm}^2/(\text{V.s})$
- **Ion:** 
  - Mobility  $\mu \sim 2 \text{ cm}^2/(\text{V.s})$

$$S_{N} = \sqrt{\left(\frac{\partial}{\partial x_{1}}\right)^{2}S_{x_{1}}^{2} + \left(\frac{\partial}{\partial x_{2}}\right)^{2}S_{x_{2}}^{2} + \left(\frac{\partial}{\partial x_{3}}\right)^{2}S_{x_{3}}^{2}}$$

#### Standard error propagation function

Transverse and



## New ideas for the ions?

- Our group was asked to "think" on an alternative option for CEPC TPC concept design
- And we did our best ...
- We proposed and investigated the performance of a novel configuration for TPC gas amplification: GEM plus a Micromegas (GEM+Micromegas)
- Hybrid micro-pattern gaseous detector module
- **GEM+Micromegas detector module** 
  - **GEM** as the preamplifier device
  - GEM as the device to reduce the ion back flow continuously
  - Stable operation in long time
  - Low material budget of the module



ANSYS-Garfield++ simulation (0T, Left: ions; Right: electrons)



Hybrid detector

#### **IBF** simulation

- □ Garfield++/ANSYS to simulate the ions back to drift
  - **GEM and Micromegas Module using ANSYS**
  - **Record** the ions to drift layer, mesh layer, and sensitive layer

Micromegas standalone

**GEM Standalone** 



electric field lines



- 8 -

#### **IBF** simulation

- □ Garfield++/ANSYS to simulate the ions back to drift
  - **350LPI/420LPI/500LPI/1000LPI**
  - **Ea is electric field of amplifier of Micromegas**



Electric field of amplifier VS Electric field of Drift

#### **IBF** simulation

□ Garfield++/ANSYS to simulate the ions back to drift



• Standard GEM module (70-50-70)

Voltage of the GEM detector

#### Test of the new module

- **Test of GEM+Micromegas module** 
  - Assembled with the GEM and Bulk-Micromegas
  - □ Active area: 50mm × 50mm
  - **A** X-tube ray and X-ray radiation source
  - Simulation using the Garfield
  - Ion back flow with the higher X-ray: from 1% to 3%
  - Stable operation time: more than 48 hours
  - □ Separated GEM gain: 1~10



Photo of the GEM+Micromegas Module with X-ray

## HV $E_d$ 4mm GEMHV $E_t$ 1.4mm MeshHV $E_a$ 0.128mm Anode

#### Supported by 高能所创新基金

## Energy spectrum@<sup>55</sup>Fe

#### Source: ${}^{55}$ Fe, Gas mix: Ar(97) + iC<sub>4</sub>H<sub>10</sub>(3)



An example of the 55Fe spectra showing the correspondence between the location of an X-ray absorption and each peak.

### Gain of GEM + MM



#### □ Test with Fe-55 X-ray radiation source

- Reach to the higher gain than standard Micromegas with the pre-amplification GEM detector
- Similar Energy resolution as the standard Micromegas
- □ Increase the operating voltage of GEM detector to enlarge the whole gain

## Discharge and working time



□ Test with Fe-55 X-ray radiation source

- Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
- Discharge possibility of hybrid detector could be used at Gain~10000
- **•** To reduce the discharge probability more obvious than standard Micromegas
- At higher gain, the module could keep the longer working time in stable

## IBF preliminary result



Gas gain and IBF versus (a): GEM voltage, micromesh  $V_{mesh} = 420V$  and (b): micromesh voltage,  $V_{GEM} = 340V$ .  $E_d = 250V/cm$ ,  $E_t = 500V/cm$ 

#### □ Test with X-tube@21kV~25kV using the Hybrid module

- Charge sensitive preamplifier ORTEC 142IH
- Amplifier ORTEC 572 A
- **MCA of ORTEC ASPEC 927**
- Mesh Readout
- **Gas: Ar-iC4H10(95-5)**
- **Gain:** ~6000

Contribution of the ions from the drift region to be  $\gamma$ , calculation of IBF,  $\eta$ :

$$I_{mesh} = G\gamma$$
  
$$I_c = \gamma + G\gamma\eta = \gamma + \eta I_{mesh}$$

G is the gas gain of the detector.

|                                  | GEM+MMG<br>420LPI<br>( IHEP )   | 2GEMs + MMG<br>450 LPI<br>( Yale University )        | Micromegas only<br>450 LPI<br>( Yale University ) |
|----------------------------------|---------------------------------|------------------------------------------------------|---------------------------------------------------|
| Ion Back Flow                    | 0.1-0.2%<br>Edrift = 0.25 kV/cm | (0.3 –0.4)%<br>Edrift = 0.4 kV/cm                    | (0.4 –1.5)%<br>Edrift= (0.1-0.4)<br>kV/cm         |
| <ga></ga>                        | 4000~5000                       | 2000                                                 | 2000                                              |
| ε-parameter(=IBF*GA)             | 4~5                             | 6~8                                                  | 8~30                                              |
| E -resolution                    | ~16%                            | <12%                                                 | <= 8%                                             |
| Gas Mixture<br>( 2-3 components) | Ar + iC4H10                     | Ne+CO2+N2,<br>Ne+CO2,Ne+CF4,<br>Ne+CO2+CH4           | X + iC4H10<br>(Ar+CF4+iC4H10)                     |
| Sparking ( <sup>241</sup> Am)    | <b>&lt;10</b> <sup>-8</sup>     | < 3.*10 <sup>-7</sup> (Ne+CO2)<br>(N.Smirnov report) | ~ 10 <sup>-7</sup><br>(S. Procureur report)       |
| Possible main<br>problem         | Thin frame                      | More FEE channel                                     | #                                                 |
| Goals                            | CEPC TPC                        | ALICE upgrade                                        | #                                                 |

#### Summary

#### Critical requirements for CEPC TPC modules

- **Beam structure**
- **Continuous Ion Back Flow**

#### Some activities for the module

- Simulation of the occupancy of the detector, the hybrid structure gaseous detector's IBF
- TPC gas amplification setup GEM+MM investigated as a high rate TPC option without the standard gating grid or others gating device
- □ Some preliminary IBF results

## Thanks very much for your attention !