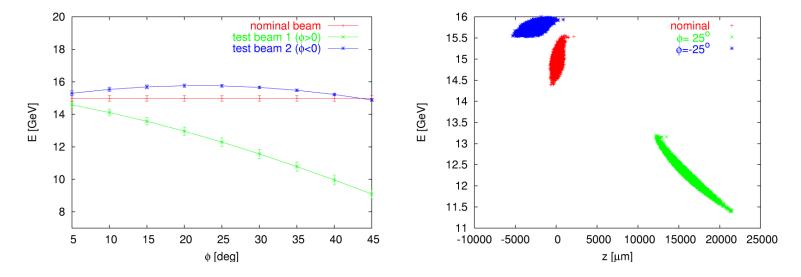
Bunch Compressor for Main Linac Alignment

• <u>Idea</u>

- in the BC, off-phase beams gain different energy with respect to the nominal one

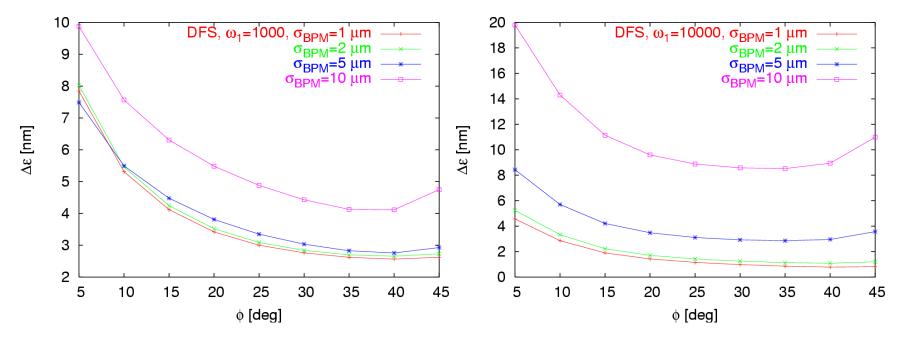
 \Rightarrow these off-phase beams can be used as *test-beams* for DFS


- Simulation Procedure
 - Tracking with PLACET
 - 1 nominal beam
 - 2 off-phase beams through the BC (phase offset introduced in the second stage of compression)
 - Main linac alignment:
 - 1. One-to-One Correction
 - 2. Dispersion Free Steering
 - [3. Dispersion Bumps Optimization]

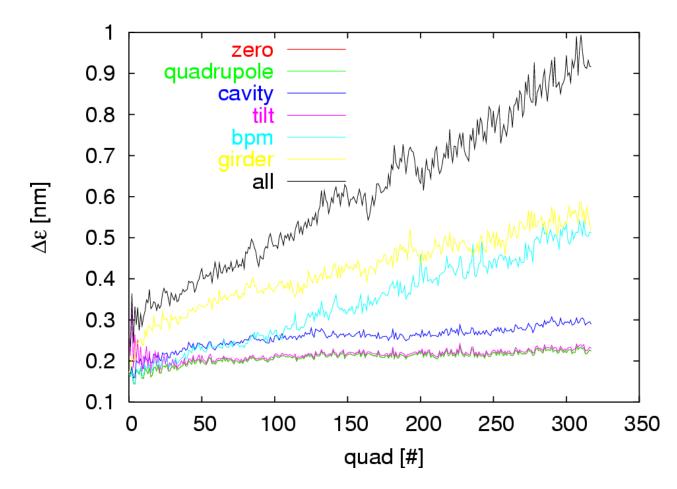
Simulation Parameters

- Bunch Compressor and Main Linac:
 - ML:
 - 24 cavity spacing lattice (1 quadrupole every 3 cryogenic modules)
 - laser-straight/curved configurations
 - BC: two stages compression, configuration 300B:
 - σ_z reduced from 6 mm $\rightarrow 300~\mu{\rm m}$
 - energy increased from 5 GeV \rightarrow 15 GeV
- Misalignment model in the ML:
 - $\sigma_{quad}=300\,\mu{\rm m}$ Quadrupole position error
 - $\sigma_{cav} = 300 \, \mu \mathrm{m}$ Cavity position error
 - $\sigma'_{cav} = 300 \,\mu \text{rad}$ Cavity angle error
 - $\sigma_{BPM} = 200 \,\mu\mathrm{m}$ BPM position error
 - $\sigma_{res} = 1 10 \, \mu \mathrm{m}$ BPM resolution

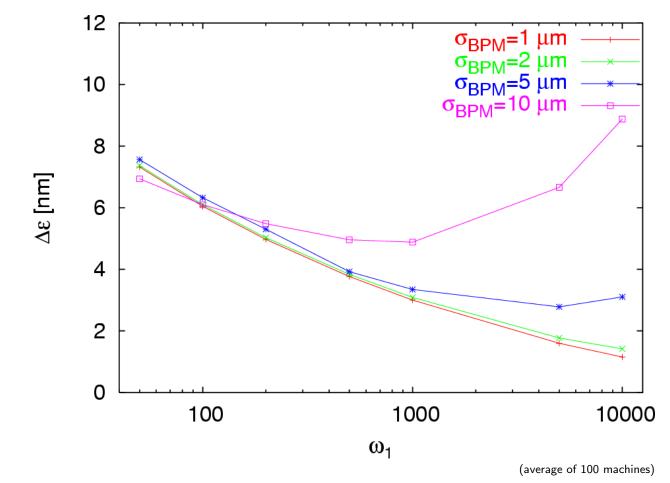
- Dispersion Free Steering:
 - 1 nominal beam, 2 help beams
 - $\omega_{1,i} = 1$, orbit correction
 - $\omega_{2,k} = 1000 10000$
 - $\sigma_{res} = 1 10 \,\mu\mathrm{m}$ BPM resolution


Bunch Compression of off-phase beams

• with respect to the nominal beam, off-phase beams have:

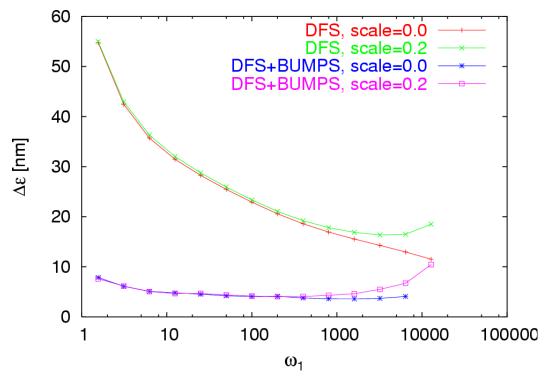

- different energy spread
- greater bunch length
- phase out of sync
- their phase must be synchronized with the ML accelerating phase

Final Emittance Growth after Dispersion Free Steering as a function of Φ



- two cases are shown: $\omega_1 = 1000$ and $\omega_1 = 10000$ (second gives better results)

- each point is the average of 100 machines
- \Rightarrow there is an optimum (which seems to vary with the weight)
 - from now on we focus on $\Phi{=}25^o$


 $\sigma_{BPM}=1 \ \mu m$, $\Phi=25^{\circ}$, $\omega=10000$, average of 100 machines

for a laser-straight linac, DFS (with ω "big", BPM resolution of 1 $\mu m)$ leads to excellent results but...

.. for a Curved Machine things are different!

In a curved linac, the BPM scale error, $X_{meas} = a X_{real}$, has an impact on the DFS performances

- Scale error prevents from using "big" weights

- We still need to use Dispersion Bumps to reduce the emittance growth!

Conclusion and future developments

- BC for generating the beam energy difference needed by DFS seems to be working
- in case of a straight linac the performances are remarkable ($\Delta\epsilon$ < 2 nm)
- in case of a curved linac the scale error imposes some limit \rightarrow dispersion bumps are necessary

- Future studies:
 - how to align the bunch compressor?
 - Does the bigger energy spread in the BC2 constitute a problem (apertures...) ?