

BSM search using Higgs to invisible decay at the ILC

Yu Kato,

Jacqueline Yan(KEK), Junping Tian, Satoru Yamashita The University of Tokyo

the 49th General Meeting of ILC Physics Subgroup Nov. 26, 2016

Higgs to Invisible Decay

- In the SM, Higgs decays invisibly through the process $H \rightarrow ZZ^* \rightarrow 4\nu$ (BR~0.1%).
- If the BR is over the prediction of the SM, It is reliable evidence for new physics beyond the SM. Dark Matter... In this study, we estimate upper limit of statistical SUSY... fluctuation of BR in the SM. invisible **SM** invisible **BSM** e⁺ e⁺ Ζ Ζ Х $BR(H \rightarrow ZZ^* \rightarrow 4\nu) \sim 0.1\%$ $BR(H \rightarrow XX) \sim ???\%$ e $N_S \propto \sigma_{ZH} \cdot \underline{BR(H \rightarrow invisible)}$ q q visible visible

Recoil Mass Method

Target: Higgs-strahlung process

•We can measure Higgs without the direct measurement of it.

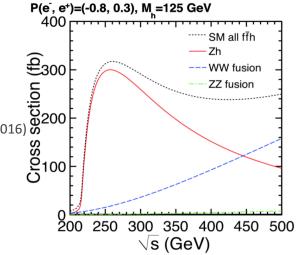
 \rightarrow model independent

$$M_{rec}^2 = (\sqrt{s} - E_Z)^2 - |\vec{p}_Z|^2$$

 Production cross section of Higgs-strahlung process is obtained in the leptonic channel study

$$\sigma_{\rm ZH} = \frac{N_S}{BR(\rm Z \to l^+l^-)\epsilon_S L}$$

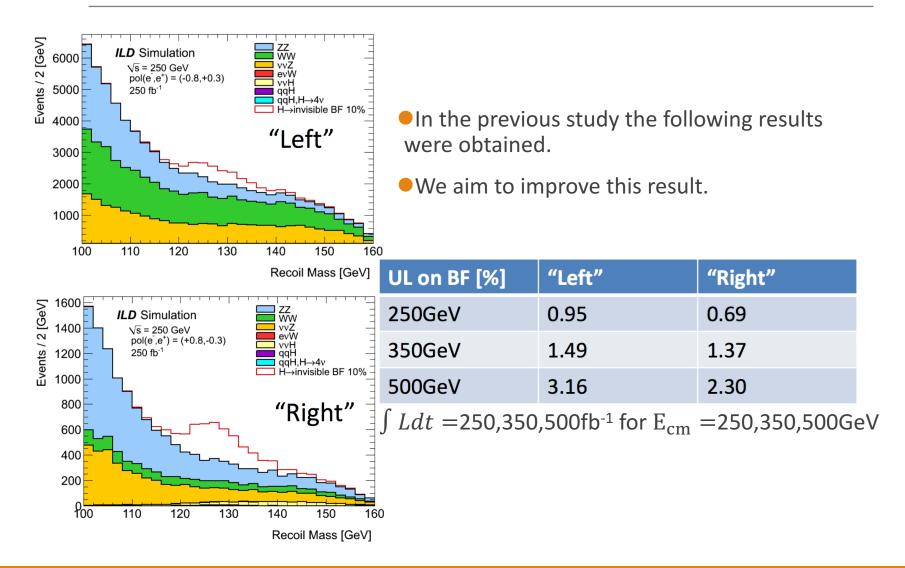
where ε_s : efficiency of signal event selection


L : integrated luminosity

J.Yan(KEK) et al. "Measurement of the Higgs boson mass and

ciency of signal event selection grated luminosity (EK) *et al.* "Measurement of the Higgs boson mass and $e^+e^- \rightarrow ZH$ cross section using $Z \rightarrow \mu^+\mu^-$ and $Z \rightarrow e^+e^-$ at the ILC" (2016)

For the search of BSM, we use hadronic channel $Z \rightarrow qq$ and $E_{cm} = 250 \text{ GeV}$

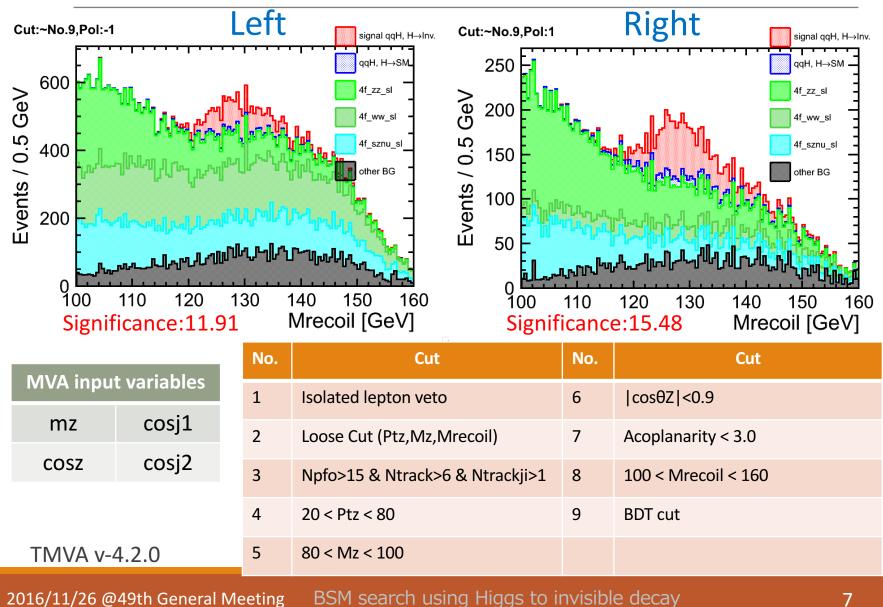


Previous study

Akimasa Ishikawa (Tohoku Unv.),

"Search for Invisible Higgs Decays at the ILC" LCWS2014@Belgrade

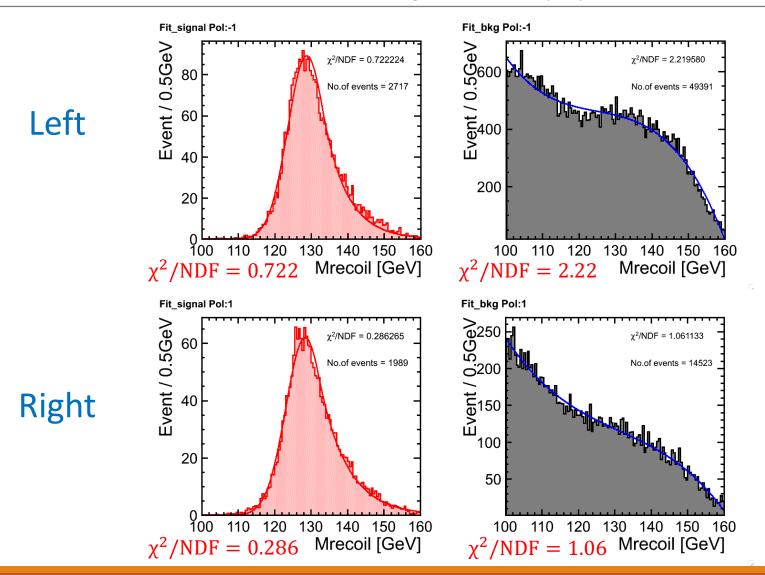
Setting & Flow of analysis

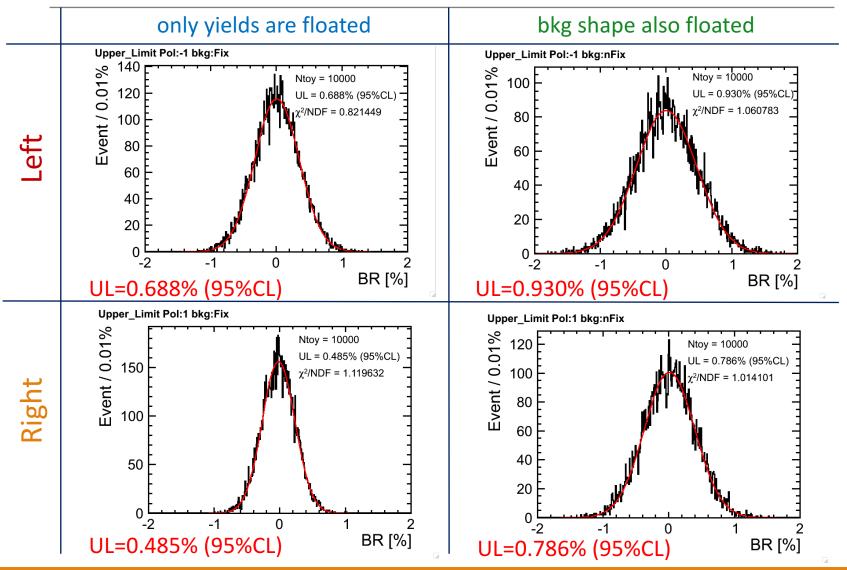

Setting

- Generator: WHIZARD
- Samples: DBD sample + Dirac sample by J.Tian ($e^+e^- \rightarrow qqH$, $H \rightarrow ZZ^* \rightarrow 4\nu$)
- Detector: the ILD full simulation
- E_{cm} =250GeV, $\int Ldt$ =250fb⁻¹, $(P_{e^{-}}, P_{e^{+}}) = (-0.8, +0.3), (+0.8, -0.3)$
- Flow of analysis
 - $^{\circ}$ Isolated lepton tagging \rightarrow veto
 - Jet clustering
 - 1. remove gamma-gamma overlay from particle flow objects (PandoraPFA) by using kt algorithm jet clustering
 - 2. convert jet to PFOs (for later LCFIPlus jet clustering)
 - 3. forced 2-jet reconstruction using LCFIPlus
 - Event selection (mention next page)
 - assume BR(H→invisible)=10%
 - Fit & Toy Monte Carlo to set upper limit

Event Selection

- 1. Isolated lepton veto
- 2. Loose restriction of transverse di-jet momentum, di-jet invariant mass, and recoil mass from di-jet
- 3. Number of particle flow objects(PFO) and charged tracks: N_{pfo}, N_{track}
- 4. Transverse di-jet (Z) momentum: Pt_Z
- 5. Invariant mass of di-jet (Z mass):M_Z
- 6. Polar angle of di-jet (Z) direction: θ_Z
- 7. Acoplanarity angle: $\varphi = \pi (\phi_1 \phi_2)$ (ϕ_i : transverse direction angle of jet)
- 8. Recoil mass: M_{recoil}
- 9. Boosted Decision Tree(BDT) method selection (multi-variate analysis)


Recoil Mass Plots [Ecm=250GeV,250fb⁻¹,BR(H->inv.)=10%]


signal: GPET (Gaussian + Exponential)

Fit signal & bkg

bkg : 3rd order polynomial

Toy Monte Carlo to set upper limit

2016/11/26 @49th General Meeting BSM search using Higgs to invisible decay

• BR of Higgs to invisible decay is reliable indicator of the BSM.

•We estimate the upper limit of statistical fluctuation of BR in the SM.

UL of BR [%] (95%CL)	Left polarization	Right polarization
only yields are floated	0.688	0.485
bkg shape also floated	0.930	0.786
previous study result	0.95	0.69

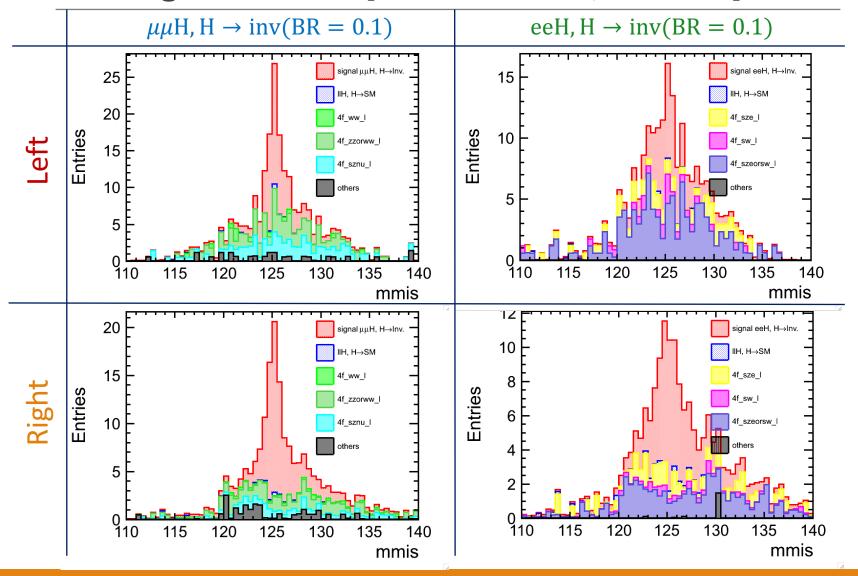
Plans

• improve fit function

Back Up

2016/11/26 @49th General Meeting BSM search using Higgs to invisible decay

Hadronic Channel Analysis Cut table [Ecm=250GeV,250fb⁻¹,Left]


Polarization: (e	e-,e+ 	-) = (-0.8,+0.				Reduct	ion Table				
Process	:	2f_1	2f_h	4f_l	4f_sl	4f_h	11H	BG	qqH	Signal	Signf
Cross Section	:	38176.9	78046.1	5655.8	18398.3	16799.3	109.233	157186	210.184	21.0184	
Generated	:	5.76948e+06	3.17329e+06	3.14632e+06	4.9795e+06	2.74204e+06	280686		568687	39601	
Expected	:	9.54422e+06	1.95115e+07	1.41395e+06	4.59957e+06	4.19983e+06	27308.2	3.92964e+07	52546	5254.6	0.837615
Cut0	:	9.16132e+06	1.94897e+07	1.35278e+06	4.59883e+06	4.19983e+06	27124.7	3.88296e+07	52546	5254.06	0.84254
Cutl	:	1.71542e+06	1.93796e+07	162691	1.64702e+06	4.19268e+06	19411.4	2.71168e+07	47847.5	5248.7	1.00695
Cut2	:	151655	385894	38813	351506	112295	9742.59	1.04991e+06	3541.23	4900.03	4.76305
Cut3	:	858.166	301045	329.353	261376	104008	9056.2	676673	3288.26	4757.17	5.749
Cut4	:	447.409	56407.6	261.745	224864	94406.5	8332.75	384720	3043.3	4522.98	7.22142
Cut5	:	150.217	11283.9	108.044	96769.5	17966.9	2578.67	128857	976.355	3560.58	9.74882
Cut6	:	145.312	5988.7	99.5936	85404.1	15545.7	2516.72	109700	910.916	3439.33	10.1842
Cut7	:	10.7462	5252.55	88.5166	81391.3	15258.4	2381.82	104383	889.332	3305.78	10.0323
Cut8	:	10.6587	5208	85.6002	81088.7	15240.2	2367.81	104001	888.704	3301.29	10.0366
Cut9	:	6.1032	1360.8	53.2566	41402.1	4634.01	1451.31	48907.6	484.159	2717.91	11.9063

Hadronic Channel Analysis Cut table [Ecm=250GeV,250fb⁻¹,Right]

Polarization: (e-,e+ 	-) = (+0.8,-0.				Reduct	tion Table				
Process	:	2f_1	2f_h	4f_l	4f_sl	4f_h	11H	BG	qqH	Signal	Signf
Cross Section	:	34983.6	46214.9	1467.78	2063.18	1568.29	63.9953	86361.8	141.951	 14.1951	
Generated	:	5.76948e+06	3.17329e+06	3.14632e+06	4.9795e+06	2.74204e+06	280686		568687	39601	
Expected	:	8.74591e+06	1.15537e+07	366946	515794	392073	15998.8	2.15904e+07	35487.8	3548.78	0.763055
Cut0	:	8.3892e+06	1.15318e+07	355972	515506	392073	15895.6	2.12004e+07	35487.8	3548.26	0.769916
Cutl	:	1.47311e+06	1.14602e+07	54961.3	220242	391346	10916.8	1.36107e+07	32298.4	3544.2	0.959414
Cut2	:	107981	241389	4395.3	52923.6	11049.2	5664.63	423403	2376.08	3303.43	5.04307
Cut3	:	530.851	185648	34.1624	44254.5	10254.8	5275.35	245998	2209.22	3204.19	6.39037
 Cut4	:	255.591	29948.8	26.4309	38270.7	9234.84	4917.57	82654	2047.21	3037.24	10.2538
 Cut5	:	78.9459	5488.86	8.79024	22133	2002.74	1484.08	31196.5	657.579	2381.7	12.872
 Сutб	:	69.9076	2688.71	7.5148	19426.4	1720.71	1449.48	25362.7	619.917	2305.86	13.7097
Cut7	:	9.38775	2448.04	6.85208	18506.1	1692.47	1376.41	24039.3	607.134	2208.31	13.4757
 Cut8	:	7.92505	2423.53	6.67759	18462.6	1690.81	1368.73	23960.2	606.369	2205.93	13.4818
 Cut9	:	4.73756	846.263	5.5476	11387.7	789.307	1065.89	14099.5	424.513	1989.68	15.4832

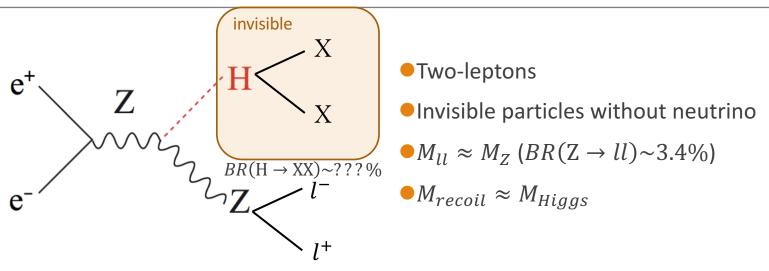
Leptonic Channel Analysis

Missing Mass Plots [Ecm=250 GeV, 250 fb⁻¹]

2016/11/18 @Regular meeting

BSM search using Higgs to invisible decay

Leptonic Channel Analysis


Improvements

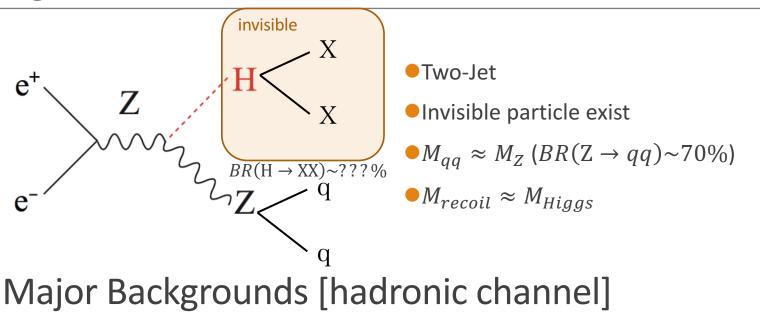
modified cut variables and trained MVA again
In the previous MVA, I used SM sample as signal. <- corrected

Significance improved, while efficiency decreased.
Which has higher priority ?

250GeV,250fb ⁻¹	,H→inv(BR=0.1)	significance	efficiency	
	Left	4.86 → 5.69	47.4% → 33.5%	
μμΗ	Right	6.48 → 7.39	67.9% → 58.9%	
eeH	Left	4.07 → 4.51	43.9% → 24.9%	
	Right	5.61 → <mark>6.39</mark>	52.7% → 48.2%	

Signal feature [leptonic channel]

Major Backgrounds [leptonic channel]


The major backgrounds have the final states with di-lepton & missing energy.

- 1. ZZ leptonic
- 2. WW leptonic
- 3. single $Z \& v_e v_e, Z \rightarrow ll$
- 4. single W & e ν_e , W \rightarrow e ν_e

5. $\nu\nu$ H,H \rightarrow ZZ,Z \rightarrow *ll*

6. $llH, H \rightarrow SM$ decay

Signal feature [hadronic channel]

The major backgrounds have the final states qqll,qqlv,qqvv.

- **1**. ZZ semileptonic
- 2. WW semileptonic
- **3.** $Zv_ev_e, Z \to qq$
- 4. $W \nu_e \nu_e, W \rightarrow qq$

- 5. $\nu\nu$ H,H \rightarrow ZZ,Z \rightarrow qq
- 6. qqH, H \rightarrow SM decay