FOR ROBUST AND (REASONABLE) FAST JET CLUSTERING

Masakazu Kurata

11/18/2016

NEURAL NETWORK JET CLUSTERING Reference jet creation NETWORK ARCHITECTURE

- Create reference jets:
 - $J_j = \sum w_{jk} p_k$, $0 \le w_{jk} \le 1$
 - p_k: track 4-momentum in an event
 - J_i: (reference) jet 4-momentum
 - Default: Durham clustering result
- Introducing the objective function for jet clustering:

$$L = \sum_{j}^{N} \sum_{i}^{n} h_{j} d(p_{i} , J_{j})^{2}$$

Output **W**₁₁ W_{Nn} Input track(each track)

- h_j : 1 if $d(p_i, J_j)^2$ is smallest, 0 if other NN output
- Network training: adjust w_{ik} to minimize L
- Learning Method: Back Propagation(usual way for Neural Network)
 - Basic idea can be seen everywhere

• $d(p_i, J_j)^2$: take Jade distance measure $d_{ij}^2 = \frac{2E_i E_j (1 - \cos \theta_{ij})}{E_{min}^2}$

STATUS

• In NN case, it takes much CPUtime to complete NN training

- Needs much epoch(iteration)
- It is very difficult to impose parameter constraint
 - \rightarrow It leads to instability of parameter convergence
- I found different way which realizes more robust and stable jet clustering than NN case
 - And, consuming less (and reasonable?) CPU time than NN training
 - Very quick convergence

• I'm trying this way and check some results

METHOD

NN: parameters are changed track by track

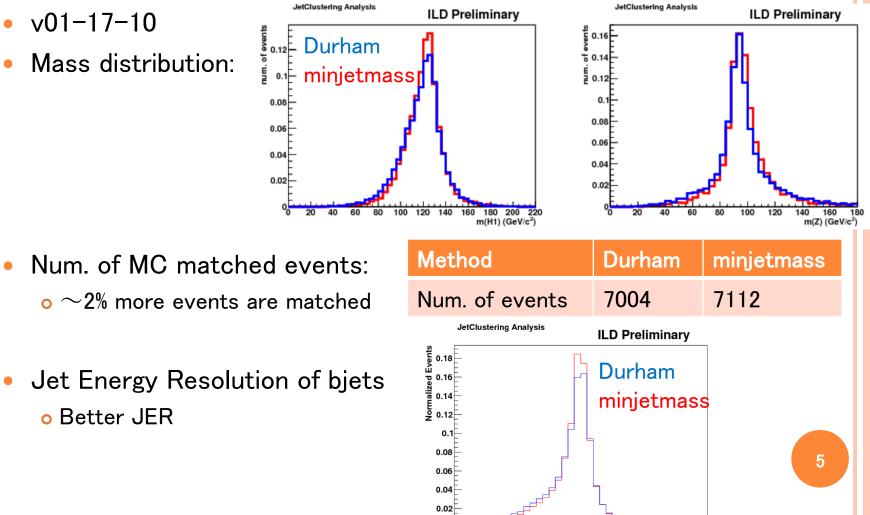
- Do not(cannot) consider a correlation of parameters
- So, change all the parameters at once

o Jade distance measure brings some changes
→jet mass is sensitive to form jets?

• So, define an objective function:

$$L = \sum_{i} m(jet)_{i}^{2} = \sum_{i,j,k} w_{ij} w_{ik} (E_{j}E_{k} - \overrightarrow{p_{j}} \cdot \overrightarrow{p_{k}})$$

constraints: $0 \le w_{ij} \le 1$, $\sum_{i} w_{ij} = 1$
i: jet number, j,k: track number


minimize L under the constraints

• This can be realized using same way as kinematic fit

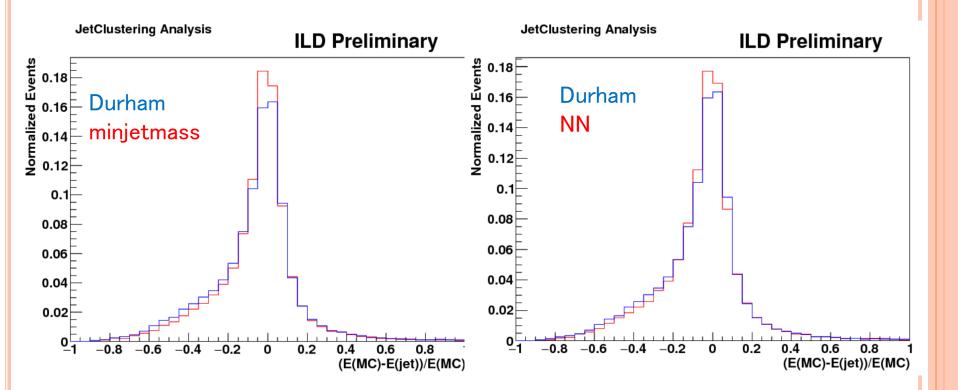
- Need Lagrange multipliers method
- Need first and second derivatives of parameter wij
- Jacobian matrix is sparse, so not difficult to solve
- Just O(10) iteration is necessary(NN: O(1000) iteration)
 - Can obtain result in less CPUtime

PRELIMINARY RESULTS

- o Using qqhh→qq(bb)(bb): 6 jet clustering
 - Use same event as original Durham clustering
 - Jet matching with MC truth is performed(cos heta >0.9 for all the b jets)

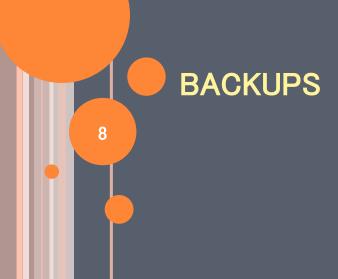
0.2 0.4 0.6 0.8

(E(MC)-E(jet))/E(MC)


-0.4 -0.2 0

-0.8 -0.6

MASS RESOLUTION



JET ENERGY RESOLUTION OF BJETS

• Start to check more

- Inside jets
- Energy fraction from each color singlet state
- Etc.

REALISTIC SITUATION

- In realistic analysis, how is the situation changed?
 - Compare between NN and orig. Durham result
 - Using same qqHH sample, 6 jet clustering
 - Btag>0.3 is imposed for 4 bjet candidates in a event
 - Higgs masses are reconstructed using χ^2 mass constraint
- Compare the remained event
 - @ χ^{2} <5.0, \sim 10% signal event is increased
 - @ χ^{2} <5.0, ZZH event contamination is \sim 2%
- Going good direction, but of course, not enough

qqHH	Btag>0.30	Chi2<5.0	Chi2<10.0	Chi2<15.0
NN	6721	4217	5422	5935
ZZH	Btag>0.30	Chi2<5.0	Chi2<10.0	Chi2<15.0
NN	3311	966	1791	2302
Org. Durham	3343	936	1836	2328