

SiD Status and Plans

International Workshop on Linear Colliders Morioka, 5 Dec 2016

- Overview
- R&D and software developments
- Collaboration activities
- Outlook

Aidan Robson for the SiD Consortium

SiD

SiD tracking

A robust, low-material, high-precision silicon system

Vertex Detector

Challenging requirements:

<3μm hit resolution Feature size ~20μm ~0.1% X₀ per layer material budget <130μW/mm² Single-bunch timing resn Technology choice comes later:

Si diode pixels ('standard' tech) Monolithic designs (MAPS, Chronopix) Vertically integrated ('3d') approaches (VIP chip) High-Voltage CMOS

Silicon strip tracker

Silicon microstrips, 25μ m pitch / 50μ m readout 5 barrel layers / 4 disks Tracking unified with vertex detector – 10 layers in barrel Gas-cooled Material budget <20% X_0 in active region Readout using KPiX ASIC bump-bonded to module

KPiX

Baseline readout for SiD tracker and ECal is KPiX

R&D on CMOS monolithic front-ends

Integrate sensors and front-end electronics on the same substrate (CMOS monolithic approach)

Potential for:

- Lower material budget
- Smaller pixel size
- Lower costs

kPixM Test structure submission:

Technology LFoundry 150nm on high resistivity substrate (2kΩcm) thinned to 150µm (fully depleted with 80V)

- Passive pixels (40μm x 500μm)
- Active pixels (8 variants of 40μm x 500μm)
- Mosfet arrays for technology characterization

	kPixM-Trk	kPixM-Cal
Pixel size Array	40x500 μm² 200x2400 Stitched 5x5	1000x1000 μm² 100x94 Stitched 5x5
Full Size	reticles	reticles
Max. Signal	1fC	1pC
Effective ENC Filtering S/N	<200e ⁻ LP + CDS >20	<1000e ⁻ LP + CDS >4
n pix mem. depth	1 bucket	16 buckets
ADC resolution	12 bits	12 bits
DC Power cons.	$\sim 20 \mu$ W/pix	\sim 20 μ W/pix
Power pulsing	Yes	Yes

SLAC

Chronopix

Tracker sensors

tracker sensor prototypes from Hamamatsu
 from 2008 became damaged by wirebonding
 (oxide layer between Metal 1 and 2 inadequate)

not pursued for several years

 renewed interest in 2016 (both SiD and ILD) and favourable negotiations with Hamamatsu; oxide layer thickness will be increased and Under Bump Metallization will be provided

Working towards full prototype test: sensor + KPiX + cables

Tracker support structures

Aidan Robson

Pair background envelope

Pairs spiraling in the magnetic field

ECal

Highly granular 'imaging' calorimetry essential for ILC physics programme:

- Particle ID/reconstruction
- Tracking charged particles
- Integral part of Particle Flow detector design

detector module between tungsten plates

ECal sensors

Major lessons so far...:

- Bump bonding to sensors with AI pads can be very difficult

 sensor foundry build final pad stack Under Bump Metallization
- Sensors with ROCs can have issues with parasitic couplings

 shield pixel traces

In present design, <u>metal 2</u> traces from <u>pixels</u> to <u>pad array</u> run over other pixels: parasitic capacitances cause crosstalk.

New scheme has "same" metal 2 traces, but a fixed potential metal 1 f trace shields the signal traces from the pixels.

ECal sensors

Aidan Robson

SiW ECal testbeam analysis

Aidan Robson

HCal

Following a review, new baseline technology for the SiD HCal is Scintillator / SiPM / Steel

Work ongoing to compare simulated single-particle energy resolution with CALICE testbeam results

Solenoid

Muon identifier / calorimeter tail catcher if

SiD baseline: long scintillator strips with WLS fibre and SiPM readout

Yoke/Muon system changes since DBD: 48x 12x

- Consistent extension of the baseline HCal scintillator technology
- Need to optimize number of layers, strip dimensions

Forward region layout

Recent studies have looked at different aspects of the forward region layout

Set of related questions:

- Is the anti-DID necessary?
- What is the optimum forward calorimeter (BeamCal) shape?
- What buffer depth is required for forward/ inner detectors?

DID: Detector-integrated Dipole

More aggressive approach to removing material from the path of backgrounds

Trade-off between BeamCal reconstruction efficiency and albedo effect

UCSC, SLAC

Vertex detector occupancy

Forward region design can affect vertex detector occupancy:

Forward calorimeter buffer size

Frequency Fraction of Hits Lost as a Function of Buffer Depth and Radius for all events all Radius (mm) 10^{7} pairbackgrounds gamma gamma bhabha 10[€] 10^{-1} low crosssection 10⁵ 10^{-2} 104 800 10^{-3} 10^{3} 600 10-4 10² 400 10-5 10-6 200 0 2 5 8 9 10 11 12 3 3 5 8 2 4 6 7 9 10 11 12 **Buffer Depth** Occupancy

Forward Electromagnetic Calorimeter Occupancy

Detailed study of dominant low-angle backgrounds using latest beam parameters Many channels in forward ECal have ~10 hits per train

Beam-related muon background in

Add?

Simulation & reconstruction

At LCWS15, SiD decided to implement DD4HEP simulation and common reco

- Implemented geometry and drivers
- Updated to latest digitizers
- Developing performance benchmarking tools
- Currently commissioning full CLIC-style pattern recognition and Pandora PFA

Z pole running

add alignment/Z pole running summary and pointer to dedicated session

Collaboration activities

Excellent SiD software/optimization workshop at PNNL in September

C NEVSLETTER OF THE LINEAR COLLIDER COMMUNITY

CURRENT ISSUE 3 NOVEMBER 2016

Calorimeter under telescope scrutiny

Strasbourg steers ILC towards ESRFI roadmap

Construction completed: ILC in Roppongi

ANNOUNCEMENTS

LCWS2016 early registration deadline extended

The early registration deadline for LCWS2016 in Morioka, Japan, has been extended to 7 November.

CALENDAR

Upcoming Events

International Workshop on Future Linear Colliders

FEATURE

SiD optimisation group moves towards new detector PNNL meeting

Work continuing via weekly meetings and collaborative tools e.g. slack channels

f У 🖾 🖯 🕂

Jan Strube, PNNL | 20 October 2016

Participants of the 2016 SiD optimisation workshop at PNNL

The benefits of having a common event data model like LCIO became ob the old framework could easily be read in the new framework.

With LCWS in Morio students from the Un Cruz and University SiD optimisation gro dedicated to getting framework. The Pac event, and 20 people WA, about 14 miles

While the ILC accele have a way to go be consortium decided reconstruction to the partially supported b disruptive, as users based infrastructure support for SiD's co

SiliconDetector ~ Aidan Robson		#detector_geometry ≗7 ☆1 Add a topic
CHANNELS(9) # coding		Sketch Angles a remaining must
# detector_geometry		
# general		
# random		
DIRECT MESSAGES (31)		
👻 slackbot		
 Aidan Robson (you) 		FTT
ਟ Andrew Myers		
ਟ Chris Potter		
 Dan Protopopescu 		

Add a topic
Sketch Angles and sides Screenshot remaining must be due to some roundin

Aidan Robson

Outlook

- SiD is a compact, capable detector
- Well-defined baseline that exceeds physics requirements
- Evolving: a lot of activity in detector R&D and in optimization readout sensors structures layout simulation and reconstruction
- ...but limited effort available.

If you have ideas for the application of new technologies, software development, or new physics studies, we welcome to you consider joining the SiD Consortium!

