Muon background from the BDS in SiD

LCWS Morioka

Anne Schütz Lewis Keller (SLAC), Glen White (SLAC)

DESY

8th December 2016

0

Si D .

- Muons from the muon spoilers
 - Muon spoiler scenarios
- MUCARLO simulation
 - Muon tracking
 - Muon 4-vectors
- Motivation
 - Results
 - Event displays of muons in the SiD detector
 - Analysis Spatial distributions
 - Analysis Energy distributions
 - Analysis Total number of hits
 - Analysis Occupancies
 - Analysis Dead cells
 - Analysis Time distributions
 - Conclusion and Outlook

References

The layout of the ILC

The muon spoilers will be installed in the Beam Delivery System (BDS) in the central region.

Anne SchützLewis Keller (SLAC), Gler

BDS tunnel layout

ILC & Muons from spoilers

Muon spoiler scenarios

There are two spoiler scenarios under discussion:

- 5 donut spoilers
- 5 donut spoilers + wall

5 donut spoilers

The donut spoilers are designed as follows:

- 70 cm radius
- 5 m long
- ullet Magnetized iron with a field of ${\sim}10\text{-}19\,\text{kG}$
- 5 locations (before IP):
 - 802.5m
 - 975.5m
 - 1145.5m
 - 1234.5m
 - 1358.5m

$5 \ donut \ spoilers \ + \ wall$

The iron wall would completely fill up the tunnel:

- 5 m x 5 m, 5 m long
- $\bullet\,$ Magnetized with a field of ${\sim}16\,kG$
- Located \sim 400 m away from the IP
- Would cost \sim \$3 million

7 / 27

MUCARLO simulation overview

- BDS backgrounds with muon collimation system modelled with MUCARLO [Lewis Keller, SLAC] and Geant4 [Glen White, SLAC]
- Using TDR baseline machine parameters for the ILC500
- Muon production processes:
 - Predominantly: Bethe-Heitler process: $\gamma + Z \rightarrow Z' + \mu^+ \mu^-$
 - Few % level: direct annihilation of positrons with atomic electrons: $e^+e^- \rightarrow \mu^+\mu^-$
- Halo particle tracking:
 - Turtle with MUCARLO
 - Lucretia with a built-in Geant4 model interface

Muon tracks in the BDS tunnel

Muon tracks of positively (μ^+) and negatively (μ^-) charged muons, originating at a specific source location:

The tracks that are drawn are only the ones that reach the detector. The spoiler polarities are set to defocus muons with the same charge as the beam charge. \rightarrow More μ^+ from the e⁻ beam than from the e⁺ beam, and vice versa.

Anne SchützLewis Keller (SLAC), Gler ILC & Muons from spoilers

Muons in the detector

10 / 27

4-vectors of the muons are given to SiD and ILD for studying the effect of the muons on the detector performance.

Scenario	Number of muons in a detector with 6.5m radius
5 spoilers	4.3 muons/bunch crossing
5 spoilers $+$ wall	0.6 muons/bunch crossing

Question to SiD and ILD: Do we need the muon wall at all?! MID people would be happy to get rid of it because of safety issues, and the costs for such a iron wall.

Muon Wall Required?

- If flux with toroid spoilers acceptable running condition from detector groups:
 - · Can we remove 5m magnetized iron muon wall?

Analysis method:

- 4-vector files provided by Lewis Keller:
 - 5 Spoilers + wall: from electron line: ${\sim}4321$ muons
 - $\bullet~5$ Spoilers + wall: from positron line: ${\sim}5834$ muons
 - 5 Spoilers: from electron line: ${\sim}30292$ muons
 - 5 Spoilers: from positron line: ${\sim}33482$ muons
- Conversion of the text files with the 4-vector values to STDHEP files.
- The STDHEP files were used as input to a full SiD detector simulation with Genat4.
- Nice event displays from the simulations with WIRED4 in JAS3.
- Studies of the spatial distributions, the muon energy, and the detector occupancies.

WIRED4 event display - 5 spoilers + wall

1 train's worth of muons (\sim 515 muons) from the positron line:

The asymmetry in the xy plane is predicted by the MUCARLO simulation output (see a few slides before), and clearly visible also in the SLIC simulation.

Anne SchützLewis Keller (SLAC), Gler

WIRED4 event display - 5 spoilers

1 train's worth of muons (\sim 2961 muons) from the positron line:

The spatial distribution is due to the tunnel shape and its shielding effects.

Anne SchützLewis Keller (SLAC), Gler

ILC & Muons from spoilers

Results Analysis - Spatial distributions

Spatial distribution in the MuonEndcaps -Spoiler and Spoiler+Wall scenarios

• SiD •

Hits from muons from 5 trains for both MuonEndcaps and all their layers:

Explanation of spatial distributions in the MuonEndcaps

Anne SchützLewis Keller (SLAC), Gler

Si D

Energy distribution of muons

In the 'Spoiler + Wall' case, the lower energy muons are either stopped or deflected by the magnetized wall.

Anne SchützLewis Keller (SLAC), Gler

Energy (GeV)

Total number of hits

Number of hits in SiD per train - 5 Spoilers vs. 5 Spoilers+Wall

Anne SchützLewis Keller (SLAC), Gler

ILC & Muons from spoilers

Results Analysis - Total number of hits

Explanation of hit number distribution -Spatial distribution in the MuonEndcaps

6000 **ECAL HCAL** 100 4000 2000 80 y (mm) 60 Tracker -2000 - 3 40 20 -4000Entries 5785 Mean x 925 Mean y 1483 RMS 1978 MuonEndcap -6000 -6000 RMS 1564 0 4000 6000 4000 -2000 2000

Hit positions MuonEndcaps - Spoiler

Anne SchützLewis Keller (SLAC), Glen

x (mm) ILC & Muons from spoilers

Occupancy plots - SiTrackerEndcap

For both scenarios, 5 Spoilers w/ and w/o Wall, 10^{-9} - 10^{-8} of all cells that get hit have 4 hits.

Anne SchützLewis Keller (SLAC), Gler

ILC & Muons from spoilers

Occupancy plots - EcalEndcap

'5 Spoilers + Wall' seems to do better by an order of magnitude, when looking at a buffer depth of 4. The occupancy is still at a level of only 10^{-5} .

The '5 Spoiler' case shows up to 70 hits per cell. \rightarrow Constant occupancy for all buffer depths.

Anne SchützLewis Keller (SLAC), Gler

ILC & Muons from spoilers

Dead cells - SiTrackerEndcap

For a assumed buffer depth of 4, the total number of dead cells is different by an order of magnitude. \rightarrow In the '5 Spoiler' case, 100 cells would have reached the buffer limit.

Anne SchützLewis Keller (SLAC), Gler

Dead cells - EcalEndcap

For a assumed buffer depth of 4, the total number of dead cells is different by a factor of about 5. \rightarrow In the '5 Spoiler' case, 1000 cells would have reached the buffer limit.

Anne SchützLewis Keller (SLAC), Gler

Time distribution - MuonEndcaps

All of the muons are created up to 0.5 ns after the bunch passing.

Number of hits **5** spoilers Entries = 14527 5 spoilers + wall Entries = 33329 10³ 10² 10 10^{-1} 10 0 20 30 40 50 60 70 80 90 100 Hit time [ns]

Hit time for MuonEndcap

Time distribution - SiTrackerEndcaps

Hit time for SiTrackerEndcap

0

10

20

30

40

50

60

70

80

90

100 Hit time [ns]

Conclusion:

- Low energy muons are stopped by the muon wall.
- High energy muons could be used for tracker alignment.
- Spatial distributions quite different in the '5 Spoiler' and '5 Spoiler+Wall' scenarios.
- Number of hits in subdetectors are explained by geometries.
- Occupancy is small, but
- Muons are instantaneous in comparison to pair background.

Outlook:

 PACMAN should be included in the SiD geometry. This will have a big effect on the backgrounds, not only the muon spoiler background → PACMAN will stop muons with energies below 3-4 GeV.

26 / 27

 \rightarrow *Stay tuned!*

References

- ECFA 2016: Talk by Glen White about the MUCARLO simulation of the muons from the muon spoilers. https: //agenda.linearcollider.org/event/7014/contributions/34689/attachments/30076/44961/ILC_muons.pptx
- [2] DESY summer student program: Talk by Jonas Glomitza (RWTH Aachen) about "The Impacts of the Muon Spoiler Background on the ILC Detector Performance", 08. September 2016. https://indico.desy.de/getFile.pyAccess?contribId=9kresId=0kmaterialId=slideskconfId=15972
- [3] FERMILAB-CONF-07-276-AD: "Suppression of Muon Backgrounds generated in the ILC Beam Delivery System", Drozhdin et.al, 2007. https://inspirehep.net/record/771808/files/fermilab-conf-07-276.pdf
- "Calculation of Muon Background in Electron Accelerators using the Monte Carlo Computer Program MUCARLO", Rokni et.al. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-7054.pdf
- [5] SLAC-PUB-6385: "Muon Background in a 1.0-TeV Linear Collider", L.P. Keller, 1993. http://www.slac.stanford.edu/pubs/slacpubs/6250/slac-pub-6385.pdf
- [6] SLAC-PUB-5533: "Calculation of Muon Background in a 0.5 TeV Linear Collider", L.P. Keller, 1991. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-5533.pdf