Megatile Studies

Yong Liu Johannes Gutenberg Universität Mainz

CALICE AHCAL Main Meeting Dec. 16, 2016, DESY Hamburg

Volker Büscher, Phi Chau, Reinhold Degele, Karl-Heinz Geib, Sascha Krause, Lucia Masetti, Ulrich Schäfer, Stefan Tapprogge, Rainer Wanke

AHCAL: towards mass assembly

- Surface-mount tile design (Uni-Mainz)
 - Suitable for mass assembly
 - Optimized with Geant4 full simulation for response uniformity
 - 1st board built successfully in 2014
 - Adopted as a baseline design for the tech. prototype (2015-2018)
 - 6 new SMD-HBUs fully assembled

Y. Liu et al, IEEE NSS 2014 DOI: 10.1109/NSSMIC.2014.7431118

AHCAL: towards mass assembly

- Surface-mount tile design (Uni-Mainz)
 - Suitable for mass assembly
 - Optimized with Geant4 full simulation for response uniformity
 - 1st board built successfully in 2014
 - Adopted as a baseline design for the tech. prototype (2015-2018)
 - 6 new SMD-HBUs fully assembled

Further simplify mass assembly?

Y. Liu et al, IEEE NSS 2014 DOI: 10.1109/NSSMIC.2014.7431118

Overview: megatile

- Further simplify mass assembly
 - Scintillator plates with embedded structures
 - Optically isolated for individual readout
- Optimize structure by Geant4 simulation

Successful applications in the past

Megatile: applications in the past and at present

Note: this list is not meant to be exhaustive; the year corresponds to the earliest one appearing in the documents at hand

CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

IGIU

Megatile: applications in the past and at present

15.12.2016

4

IGIU

MegaTile design

- How to proceed?
 - Create trench arrays
 - <u>either</u> by cutting (for prototyping)
 - <u>or</u> injection molding (mass production)
 - Fill in the trenches with white paints

MegaTile design

- How to proceed?
 - Create trench arrays
 - <u>either</u> by cutting (for prototyping)
 - <u>or</u> injection molding (mass production)
 - Fill in the trenches with white paints
- Simulation studies with focus on
 - Double trench arrays

Predicted performance: MIP response, cell-to-cell crosstalk?

Megatile full simulation: overview

- A scintillator plate (BC408) segmented for 12×12 cells
 - Cells separated by trenches, filled in with white paints
 - Each cell individually read out by an SMD-SiPM
 - Top/bottom surfaces covered with ESR foil
 - Muons pass through the central cell perpendicularly

Trenches filled in with TiO2, presumed to be ideally diffuse

15.12.2016

'CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

Simulation: straight trenches

Simulation: straight trenches

- Top and bottom trenches
 - Different trench depths, widths, offset between top and bottom
 - Including technical constraints
 - 2.0 mm deep, 200 µm and 300µm wide (trapezoid), 300µm offset ٠
- Geant4 simulation results
 - Central cell: 25.4 p.e./MIP
 - Neighboring cell: 0.49 p.e./MIP
 - 2-cell crosstalk: 1.9 %
 - Same in 4 direct neighboring cells:

Rendered by G4RayTracer

15.12.2016

Simulation: straight trenches

- Top and bottom trenches
 - Different trench depths, widths, offset between top and bottom
 - Including technical constraints
 - 2.0 mm deep, 200 µm and 300µm wide (trapezoid), 300µm offset ٠
- Geant4 simulation results
 - Central cell: 25.4 p.e./MIP
 - Neighboring cell: 0.49 p.e./MIP
 - 2-cell crosstalk: 1.9 %
 - Same in 4 direct neighboring cells:

No cell boundary effects (cut off hit positions within 2 mm from cell boundary) 0.00 0.01

0.00

2

Response map of a Megatile

0.02

0.02

0.01

0.00 0.00

8

0.02 0.00 0.00

10

CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

12

10

8

6

0_ò

Y indices of a Megatile

12

10

10-1

10⁻²

10⁻³

10

10-5

SiPM / p.e

Mean Response of

Rendered by G4RayTracer

• Special MC runs: muons only hit corners of 4 cells

x: -0.6~0.3 mm; y: -0.6~0.3mm; step size: 30 µm

• Special MC runs: muons only hit corners of 4 cells

x: -0.6~0.3 mm; y: -0.6~0.3mm; step size: 30 µm

Solid and dashed lines indicate top and bottom trenches (borders)

Boundary area: 3.6 % of a cell <u>Lower</u> response: ~ 8 p.e./MIP ~ 30% of each cell response

Due to trench geometry: only 1mm thick scintillator in these regions, not nominal 3mm

• Special MC runs: muons only hit corners of 4 cells

x: -0.6~0.3 mm; y: -0.6~0.3mm; step size: 30 µm

Solid and dashed lines indicate top and bottom trenches (borders)

Boundary area: 3.6 % of a cell <u>Lower</u> response: ~ 8 p.e./MIP ~ 30% of each cell response

Due to trench geometry: only 1mm thick scintillator in these regions, not nominal 3mm

Special MC runs: muons only hit corners of 4 cells

x: -0.6~0.3 mm; y: -0.6~0.3mm; step size: 30 µm

Solid and dashed lines indicate top and bottom trenches (borders)

Boundary area: 3.6 % of a cell <u>Lower</u> response: ~ 8 p.e./MIP ~ 30% of each cell response

Due to trench geometry: only 1mm thick scintillator in these regions, not nominal 3mm

Small dead area: 0.01% of a cell (overlapping of top and bottom trenches)

Individually wrapped tiles

Tile size: 29.6 × 29.6 mm²

Dead area per tile: 2.6% (23.84mm²)

CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

A megatile design: tilted trenches

- Straight double trenches
 - Boundary area: 3.6 % per cell
 - Active, but with lower response (only ~30% of center area)
 - Geometry effect: 1 mm scintillator material left in the area
 - Dead areas (small): 0.01% per cell
 - Depend on trench width
- Trenches tilted by some angle
 - To increase response of boundary areas

A megatile design: tilted trenches

- Straight double trenches
 - Boundary area: 3.6 % per cell
 - Active, but with lower response (only ~30% of center area)
 - Geometry effect: 1 mm scintillator material left in the area
 - Dead areas (small): 0.01% per cell
 - Depend on trench width
- Trenches tilted by some angle
 - To increase response of boundary areas
- Tilted trenches: only one design shown
 - Tilted 45°, 2mm depth (vertical projection)

Rendered by G4RayTracer

Constructed in SU

2.0 mm

Simulation: tilted trenches

<u>2.0 mm</u>

Rendered by G4RayTracer

Response map of a Megatile

15.12.2016

'CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

10 JG U

Simulation: tilted trenches

<u>2.0 mm</u>

Rendered by G4RayTracer

Response map of a Megatile

2-cell crosstalk: 1.9 %

Geant4 simulation results

- Central cell: 22.4 p.e./MIP
- Neighboring cell: 0.36 p.e./MIP
- 2-cell crosstalk: 1.9 % in all 4 neighboring cells

No boundary effects (cut off hit positions within 2 mm from cell boundary)

MC suggests promising low crosstalk level and moderate MIP response

SiPM / p.e

đ

Mean Response

All boundary area is <u>active</u> and most (>96%) has <u>>70% response</u>

- All boundary area is <u>active</u> and most (>96%) has <u>>70% response</u>
- Comparison with current tile design
 - Nominal size: <u>30.0 ×30.0 mm²</u>
 - Current tile size: 29.6 × 29.6 mm²
 - Dead area per tile: 23.84 mm² (~ 2.6%)

Improved size also exists: 29.7 × 29.7 mm²; Dead area per tile 17.91 mm² (~ 2.0%)

- All boundary area is <u>active</u> and most (>96%) has <u>>70% response</u>
- Comparison with current tile design
 - Nominal size: <u>30.0 ×30.0 mm²</u>
 - Current tile size: 29.6 × 29.6 mm²
 - Dead area per tile: 23.84 mm² (~ 2.6%)

Improved size also exists: 29.7 × 29.7 mm²; Dead area per tile 17.91 mm² (~ 2.0%)

- All boundary area is <u>active</u> and most (>96%) has <u>>70% response</u>
- Comparison with current tile design
 - Nominal size: <u>30.0 ×30.0 mm²</u>
 - Current tile size: 29.6 × 29.6 mm²
 - Dead area per tile: 23.84 mm² (~ 2.6%)

Improved size also exists: 29.7 × 29.7 mm²; Dead area per tile 17.91 mm² (~ 2.0%)

Megatile has such a potential of almost zero dead area

Megatile: a first prototype

- Double trenches (straight), 3×3 cells
 - Scintillator: NE110 (comparable to BC408)

Megatile: a first prototype

- Double trenches (straight), 3×3 cells
 - Scintillator: NE110 (comparable to BC408)
 - Depth 2.0 mm, width 0.5 mm, offset 1.0 mm
 - Less challenging parameters, only for the first prototyping
 - Worse performance than previous simulation expectation
 - Still could verify simulation by adapting new parameters

'CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

Megatile prototype: cosmic-ray tests

- Megatile all 6 surfaces covered by foil
 - 3M DF2000MA
- Foil strips inside trenches
 - High reflectivity (>98 %)
 - Specular reflector

Megatile prototype: cosmic-ray tests

- Megatile all 6 surfaces covered by foil

 3M DF2000MA
- Foil strips inside trenches
 - High reflectivity (>98 %)
 - Specular reflector
- Cosmic-ray test stand
 - Trigger the central cell
 - Include tracks passing cell boundaries

5.2

1.5

Cell Index in X

Cosmic-ray measurements

2

3.1

2.5

0.5

2.4

0.5

10⁻¹

Megatile prototype: cosmic-ray tests

- Megatile all 6 surfaces covered by foil

 3M DF2000MA
 - Foil strips inside trenches
 - High reflectivity (>98 %)
 - Specular reflector
- Cosmic-ray test stand
 - Trigger the central cell
 - Include tracks passing cell boundaries

CALICE AHCAL Main Meeting 2016 (yong.liu@uni-mainz.de)

1st prototype versus its custom simulation

Geant4 simulation

1st prototype versus its custom simulation

Geant4 simulation

- Comparisons
 - Similar MIP response in central cell in data and MC
 - MC also predicts similar crosstalk
 - Worse uniformity of crosstalk seen in prototype measurements
 - Simulation assumed perfect quality of trench cutting

Response Map (Data)

15.12.2016

14

IGIU

1st prototype versus its custom simulation

Geant4 simulation

- Comparisons
 - Similar MIP response in central cell in data and MC
 - MC also predicts similar crosstalk
 - Worse uniformity of crosstalk seen in prototype measurements
 - Simulation assumed perfect quality of trench cutting

This first prototype still different from optimized design; promising performance if optimal designs can be realized

IGIU

Summary and plans

- Megatile R&D: to further simplify mass assembly
 - Various designs tried out in simulation
 - Optimized designs foresee promising performance (also with considering practical tech. constraints)
 - A small prototype built to verify simulation

Summary and plans

- Megatile R&D: to further simplify mass assembly
 - Various designs tried out in simulation
 - Optimized designs foresee promising performance (also with considering practical tech. constraints)
 - A small prototype built to verify simulation
- Status
 - Ingredients ready for white paints (transparent epoxy, TiO2 powder, etc.)
- Plans
 - Full-size prototypes (12×12 cells) under development
 - Test mixing epoxy and TiO2 (curing time, mechanical stability)

Summary and plans

- Megatile R&D: to further simplify mass assembly
 - Various designs tried out in simulation
 - Optimized designs foresee promising performance (also with considering practical tech. constraints)
 - A small prototype built to verify simulation
- Status
 - Ingredients ready for white paints (transparent epoxy, TiO2 powder, etc.)
- Plans
 - Full-size prototypes (12×12 cells) under development
 - Test mixing epoxy and TiO2 (curing time, mechanical stability)

Thank you!

Backup

Efforts of MegaTile development at Mainz (1)

• MegaTile with steel grids

Prototype with metal grids and individual tiles

70 hNpe Entries 887 BC408 scintillator Mean 22.24 RMS 9.069 χ^2 / ndf 24.15/21 60 Steel grids coated with chrome Width 855 ± 0.346 MPV 17.81 ± 0.25 1x1mm² HPK MPPC Area 912.2 ± 39.5 GSigma 3.058 ± 0.541 50 40 Events 30 Cosmic-ray measurement 20 17.8 p.e./MIP 10 0 20 50 60 80 10 30 40 70 90 100 1-MIP Response / p.e.

1-MIP Response in Cosmic Rays (chrome coated strips / SiPM: S1251-025P / 1.Run)

- Idea: quickly produce metal grids
- A first prototype worked well with steel strips and individually machined tiles

Efforts of MegaTile development at Mainz (1)

• MegaTile with steel grids

Prototype with metal grids and individual tiles

70 hNpe Entries 887 BC408 scintillator Mean 22.24 RMS 9.069 χ² / ndf 24.15/2 60 Steel grids coated with chrome Width MPV 17.81 ± 0.25 1x1mm² HPK MPPC Area 912.2 ± 39.5 GSigma 3.058 ± 0.541 50 40 Events 30 Cosmic-ray measurement 20 17.8 p.e./MIP 10 0 20 50 10 30 40 60 70 80 100 1-MIP Response / p.e.

1-MIP Response in Cosmic Rays (chrome coated strips / SiPM: S1251-025P / 1.Run)

- Idea: quickly produce metal grids
- A first prototype worked well with steel strips and individually machined tiles
- Many manufacturers tried, but could not produce the steel grids with sub-mm thickness at the size ~ 36x36 cm²

Efforts of MegaTile development at Mainz (2)

- MegaTile with carbon-fiber
 - Built a prototype of grids
 - Carbon-fiber: many thin layers glued together
 - Mechanically fragile

Efforts of MegaTile development at Mainz (2)

- MegaTile with carbon-fiber
 - Built a prototype of grids
 - Carbon-fiber: many thin layers glued together
 - Mechanically fragile

A small part fractured

18 JG U