

News from KLauS (4)

- New chip & test setup
- Characterization measurements
 - Front-end
 - ADC
 - Full chain

• Next steps & further plans

Konrad Briggl, KIP, Uni Heidelberg

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

KLauS4: New multi-channel prototype

Taped out first multi-channel prototype in May 2016

1.5 x 4.5 mm² miniASIC, UMC180 (Final 36 channel chip size 5x5mm²) Under test since few weeks

7 Front-End + ADC + digital channel control modules

1 TDC-only channel (external time reference) 25ns binning of all time-stamps (Fine-time TDC under development)

1 ADC test channel (separate)

Digital part

Structured as future 36 channel version Different readout options: Fast LVDS (160Mbit/s), slow I²C link

Front-end: Blocks

Input stage:

Low input impedance SiPM bias voltage DAC

High gain stage:

Single pixel spectra O(10ths of pixels)

Low gain stage: Full SiPM dynamic range

2 Trigger branches: Event trigger HG/LG selection

Two levels of data concentration:

L1 & L2 arbiter+FIFO (1,2)

Event data Serialization

LVDS or I^2C interfaces (3)

Hit validation in ADC control logic & L1 FIFO 8bit channel hit counter read out by I²C transaction (SMBUS block read) Slow control using SPI, will be replaced by I²C (SMBUS block r/w)

KLauS4 test board

Compatibility with requirements for Testbeam

Possibility to participate in future testbeam campaigns SMD MPPC pads distribution similar to HBU → Scintillating tiles can be placed on top

To allow insertion into absorber stack

Form factor & overall height *adopted*

- → Total thickness <7mm
- → 1mm PCB, 6 layers

DAQ outside of absorber

 \rightarrow Flex cable connection

Interface Connections

SPI & LVDS & I2C ↔ interface board ↔ DAO

SiPM DAC scans

8bit voltage DAC for each channel:

Tuning of voltage at input terminal Always on: Low power (1-2nA/LSB)

Measure 3 boards, 7 channels each

Tuning range of 2V as expected

Some slope dispersion: Mostly channel-to-channel, chip-to-chip dispersion small

DNL pattern visible, withing expectations of MC simulations

Charge integration

Charge injection using 33pF capacitor

3 Scale settings, 2 separate Branches

High gain branch \rightarrow 1:1 or 1:7 (exclusive) Low gain branch \rightarrow 1:48

Comparator: Threshold setting

Comparator s-curves, 7 channels:

- No threshold tuning (same finetune setting)
- 2 global threshold settings after finetuning

Two DACs to adjust threshold:

- Global 6 bit DAC: Coarse setting

- ~50fC / LSB
- 4 bit DAC per channel:

Fine-tuning, ~5fC/LSB

Threshold Dispersion mitigation

Dispersion reduced after fine adjustment 60fC RMS → 17fC RMS (Some outliers)

Satisfactory for >=25 um pixel SiPMs, To be tested for 10um pixels @ low light yield/MIP

Full chain: first checks

After proper Threshold and hold time settings:

Behaviour as expected

- → Comparator fires (Trigger signal set)
- \rightarrow Hold swich opened at peak
- → ADC takes over conversion (Trigger signal reset)

Waveforms: DCR + LED light pulse on 25um MPPC

- Analog outputs
- Comparator output

ADC: 10bit operation

For linearity measurements:

External DC signal, sweep voltage

DNL pattern: every 32, pair of two

- \rightarrow Parasitics on bridge capacitor
- → Easy to correct in software: Simple rebinning, no calibration runs needed

Much better than previous prototype!

Performance satisfactory

→ Next 36 channel prototype will use this ADC

Expect to improve in separate Test chip to be submitted in Q1/2017

10

ADC: 12bit operation

12b resolution operation mode for SiPM spectrum digitizaton

<u>3 digitization steps:</u>

- (1) 6b digitization in main SAR
- (2) Amplification of residual error
- (3) 8b digitization in pipelined stage remaining bits saved for redundancy

AHCAL Meeting 12/16

ADC: 12bit operation

12b resolution operation mode for SiPM spectrum digitizaton

Scan results:

Very satisfactory: DNL < 0.31 LSB INL < 0.50 LSB (Note: not the full dynamic range!)

7b x 16 5b 4b

DNL: +0.23 / -0.31

Full chain: MPPCs & 10bit ADC

25um & 50um Pixel MPPCs: Large single pixel signals

10bit ADC resolution sufficient to see single photon spectra

Both spectra:

Internal trigger, ~15ns LED pulse Threshold at 1-2 p.e. Fixed to 1:1 scaling (HG branch)

External trigger / validation features not tested yet: Would remove DCR hits

h ADC 10b CH0 h ADC 10b CH0 # Entries ₀0 Entries [a.u.] Entries 16120 Entries 102365 723 Mean Mean 889 RMS 15.85 66.27 RMS LED spectrum 10^{3} DCR spectrum 10^{2} 10 700 750 800 850 900 950 700 750 800 850 900 950 ADC bin ADC bin 50um pixel MPPC [log scale] 25um pixel MPPC: LED+DCR, DCR only

 → Backup slides:
50um MPPC spectra at different thresholds

13

AHCAL Meeting 12/16

Front-end only: 10um MPPC

10um Pixel MPPCs:

12bit ADC needed for single photon spectra

To be done next...

Here: 10um MPPC at datasheet bias (gain: 1.35e5), Measured with analog monitor of front-end & Fast DSO

- Decent peak separation
- Most ASIC parameters not touched

Summary & further development

Current prototype

- KLauS4 7 channel prototype operational
- 2V SiPM bias tuning range
- ADC shows promising results
- SPS for full chain using larger gain SiPMs

Next steps

- Qualitative characterization of front-end parameters
- Full chain measurements of 10um SiPM
- Test Power gating and remaining digital features
- Participation in test beam in near future seems feasible!
- 36 Channel version planned to be submitted in Q2 2017

Backup slides

KLauS4 Test setup

17

SiPM DAC scans

8bit voltage DAC for each channel

Tuning range of 2V as expected Some slope dispersion:

Mostly channel-to-channel, chip-to-chip dispersion small

Envelope per chip

DNL patterns

Low power \rightarrow Large DNL expected: Up to 4 in MC simulations Similar pattern for all chips&channels \rightarrow Layout can be tuned eventually

DAC DNL: 21 Channels

Interface: Front-end, ADC & control logic

Hold switch controlled by Front-end

 \rightarrow Initiated by Comparator

Synchronized pass-over to ADC

→ ADC starts conversion (Trigger signal reset & blocked)

Synchronized unblocking of comparator

- \rightarrow ADC conversion finished
- \rightarrow New comparator triggers allowed to pass

Full chain: MPPCs & 10bit ADC

50um Pixel MPPCs

LED spectra at different thresholds (Auto trigger) Lower thresholds: Higher DCR contributions Same statistics for all runs: Different acquisition times

Previous protoype: ADC DNL estimations

