LHC status and upgrade plan (physics & detector)

'17 3/30 Yosuke Takubo (KEK)

#### ATLAS experiment in 2016

#### ATLAS experiment

- The experiment started in 2008.
- Discovered Higgs in 2012.
- Run-2 operation started in 2015 with 13 TeV colliding energy.

#### ATLAS detector

- General purpose detector with subdetector complex
- Size: 25 m(r), 44 m (z)
- Inner tracker: Pixel, SCT, TRT
- Calorimeter: LAr (EM), Tile (HD)
- Muon detector: MDT, RPC, CSC, TGC



Tile Calorimeter Liquid Argon Calorimeter

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

#### Current ATLAS operation condition

- The integrated luminosity arrived at 36.0 fb<sup>-1</sup> in record.
- The peak instantaneous luminosity is increased to  $\sim 1.4 \times 10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>.
  - > Already higher than LHC design value (1 x  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>).
- $\rightarrow$  The high luminosity causes many challenges in detector operation, especially for Pixel detector.



#### **ATLAS Pixel detector**

- Pixel detector is put in the closest position to the beam collision point.
  - $\rightarrow$  Operated at highest particle density and radiation.
- 4 barrel layers and 3 endcap disks
- IBL was installed in 2014 at the innermost region to cope with high luminosity after 2015.







Forward SCT

Barrel SCT

**Pixel Detect** 

#### Insertable B-Layer (IBL)

#### What is IBL?

- The new innermost pixel layer installed in 2014 (r=33mm).
- Installation of IBL is the first upgrade activity in ATLAS experiment.
- KEK contributed to construction, installation and commissioning of IBL.

#### Motivation

- To keep efficiency after 2015.
  - > FE chip was designed to work at up to  $1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$  in the innermost layer.
- Tracking and physics performance improvements mainly for b-tagging.



b jet efficiency

#### IBL on-detector components

- Sensor modules:
  - ➢ Planar sensor (75%), 3D sensor (25%)
  - > The first time to use 3D sensor in HEP experiment
  - > Pixel size: 50 x 250 um<sup>2</sup>
- 14 staves (12 planar and 8 3D modules per stave)
- Service cables: installed with the detector
- Ti pipe with 1.5 mm diameter for CO<sub>2</sub> cooling



Service cables

Cooling pipes

Staves

#### **IBL** installation

- The modules are mounted on the staves.
- The 14 staves were integrated on a support tube on surface.
- 7 m long of IBL package was contained within the limited radial envelop space (10 mm).
- IBL was moved to ATLAS experimental hall at 90 m underground and installed into the ATLAS on May, 2014.
  - > The insertion clearance less than 0.1 mm







#### Benefit with IBL (tracking performance)

- The good impact parameter resolution is important for b-jet tagging, pile-up suppression and object identification.
- The impact parameter resolution is significantly improved with IBL especially at low-pT.

> reduced by ~40% for d0 and Z0 at the maximum



#### Benefit with IBL (b-tagging)

- The better track extrapolation resolution improves b-tag performance.
- The light jet rejection is increased by ~4 times for  $\varepsilon_b=70\%$ .



#### Data-taking overview in 2016

- Pixel detector works with good data-taking eff. at higher peak luminosity than 1.0x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>.
- Other sub-detectors were also operated in very stable condition.
- About 95% of data are used for physics analyses in 2016.

| Inner Tracker |      |      | Calorimeters |      | Muon Spectrometer |      |      |      | Magnets  |        | Trigger |
|---------------|------|------|--------------|------|-------------------|------|------|------|----------|--------|---------|
| Pixel         | SCT  | TRT  | LAr          | Tile | MDT               | RPC  | CSC  | TGC  | Solenoid | Toroid | L1      |
| 98.9          | 99.9 | 99.7 | 99.3         | 98.9 | 99.8              | 99.8 | 99.9 | 99.9 | 99.1     | 97.2   | 98.3    |

#### Good for physics: 93-95% (33.3-33.9 fb<sup>-1</sup>)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at  $\sqrt{s}$ =13 TeV between April-October 2016, corresponding to an integrated luminosity of 35.9 fb<sup>-1</sup>. The toroid magnet was off for some runs, leading to a loss of 0.7 fb<sup>-1</sup>. Analyses that don't require the toroid magnet can use that data.

#### Challenges with high luminosity

- LHC will be operated with higher instantaneous luminosity than the design value  $(1x10^{34}cm^{-2}s^{-1})$ .
  - > Already 1.4x10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> in 2016. (1.7x10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup> in 2017)
- The luminosity will be increased up to  $3x10^{34}$  cm<sup>-2</sup>s<sup>-1</sup> at the maximum.
- Each sub-detector group is investigating operationability of the detector and limitation in data-taking.



# Quick overview of recent physics results

See the latest results in Moriond:

- https://indico.in2p3.fr/event/13763/other-view?view=standard
- http://moriond.in2p3.fr/QCD/2017/MorQCD17Prog.html

# $H \rightarrow \gamma \gamma$

- H $\rightarrow$   $\gamma\gamma$  with 13.3 fb<sup>-1</sup> at Run2 (ATLAS-CONF-2016-067).
- Clear peak is observed with 13 TeV at  $m_H$ =125.09 GeV.
- Consistent results with different final states.



# $H \rightarrow \gamma \gamma$ and $ZZ^*$

- Combined results of  $H \rightarrow \gamma \gamma / ZZ^*$  at Run2 (ATLAS-CONF-2016-081)
- The xsec is consistent with SM for different production processes.
- Inclusive:  $\mu = 1.13^{+0.18}_{-0.17}$

**ATLAS** Preliminary  $m_{H}=125.09 \text{ GeV}$  $\sqrt{s}=13 \text{ TeV}, 13.3 \text{ fb}^{-1}(\gamma\gamma), 14.8 \text{ fb}^{-1}(ZZ)$ 



# $H \rightarrow \mu\mu$ (New)

| Data set                 | Upper limit @95% CL<br>Observed (expected) | Signal strength |
|--------------------------|--------------------------------------------|-----------------|
| Run2 (13TeV)             | 3.0 (3.1)                                  | $-0.07 \pm 1.5$ |
| Run1 + Run2 (7/8/13 TeV) | 2.7 (2.8)                                  | $-0.13 \pm 1.4$ |



#### Measurement of W boson mass

- W boson mass is precisely measured at ATLAS (arXiv:1701.07240).  $M_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$  $= 80370 \pm 19 \text{ MeV}$
- The precision in ATLAS only measurement is similar level as combined results of LEP/Tevatron.



18

q

#### SUSY search

- Final state: 0-lepton + jets +  $E_t^{miss}$  (ATLAS-CONF-2017-022)
- Search for pair production of squark/gluino
- 1.5 $\sigma$  excess at m( $\tilde{g}$ )=1.6TeV and m( $\tilde{\chi}_1^0$ )=800GeV in gluino pair production.
- The excess became smaller in the latest result.



# Diphoton resonance

19

- An excess was observed at 750 GeV in diphoton resonance search in 2015.
- But..., the peak disappeared in 2016.
- Considered due to statistical fluctuation.



-ocal p-value

10-

10-2

 $10^{-3}$ 

 $10^{-4}$ 

10-5

ATLAS Preliminary ----- 2015 (3.2 fb<sup>-1</sup>)

----- 2016 (12.2 fb<sup>-1</sup>

Combination

√s=13 TeV, 15.4 fb<sup>-1</sup>

 $X \rightarrow \gamma \gamma$ ,  $\Gamma_x / m_x = 10 \%$ 

Spin-0 Selection

#### Dark matter + heavy flavour

- Final states: dark matter + heavy flavour
- 3.3 sigma excess was observed in 13 fb<sup>-1</sup> in DM with two top quarks.
- No update in Moriond and looking forward to new results.





#### Search for W' (New)

- Search for W' $\rightarrow$ lv
- The mass limit is improved a lot from Run-1 with 13 TeV colliding energy (ATLAS-CONF-2017-016)
- Run-1: 3.2 TeV  $\rightarrow$  Run-2: 5.22 TeV (in SSM)



#### Prospects toward HL-LHC

#### From LHC to HL-LHC

LHC will be upgraded to High-Luminosity (HL-) LHC after stopping the operation in the end of 2022.



#### ATLAS Phase-II upgrade

New front-end and

back-end readout

- Inner detector (PIX, SCT, TRT)
- EM calorimeter <sup>-</sup>
- HD calorimeter
- Muon detector
- Replacement of the inner detector by ITK is one of the biggest challanges in ATLAS upgrade for HL-LHC.



Replaced by silicon detectors

(ITK: Inner TracKer)



#### ITK-Pixel (overview)

- Required radiation tolerance: 2x10<sup>16</sup> 1MeV n<sub>eq</sub>/cm<sup>2</sup>
   > 4 times larger than LHC
- The sensors is designed to have fine pixel pitch and thin thickness to work in high pileup condition.
  - Pixel size (um<sup>2</sup>): 50 x 250
  - Thickness (um): 200

Sensor with fine pixel pitch and high radiation tolerance is the most important development items.

 Sensor candidate

 3D
 CMOS

 n-in-n planar
 n-in-p planar



#### ITK-Pixel (module/loading)

- ITK-Pixel consists of ~6000 modules for 5 barrel layers. (IBL: ~400 modules)
- Japan plans to produce ~2000 modules (~30%).
- TDR will be submitted in the end of 2017.
- The preproduction of the modules will start in ~2018.
- The way of loading modules (layout) is still under discussion.







#### ITK-Strip (overview)

- Required radiation tolerance:  $2x10^{15}$  1MeV  $n_{eq}/cm^2$
- The sensor must be fine pitch to work in high pileup condition.

Inner layer  $\begin{cases} \bullet \text{ Strip pitch (um): } 80 \\ \bullet \text{ Strip length (cm): } 12.8 \end{cases} \xrightarrow{74.5} 2.4 \text{ (outer layer: } 4.8) \end{cases}$ 

Strip Channel Occupancy in

• Sensor coverage: 193m<sup>2</sup>(current ATLAS SCT: 61m<sup>2</sup>)

 $\rightarrow$  Production and construction are big deal.

#### - Key technology

- Senor with fine pitch and high radiation tolerance
- Large size sensor ladder with low material budget



## ITK-Strip (ladder)

• ITK-Strip needs ~400 ladders for both barrel and endcap with 18k modules.

> Japan will provide sensors in collaboration with HPK.

- A barrel stave consists of 12 modules attached on PCB directly.
- The same design is used also for endcap, and 400 petals are used to construct 2 endcaps of 6 layers.
- This design can realize low material budget with advanced technology.



#### Tracking performance with ITK

29

The better or similar impact parameter resolution and b-tagging performance are expected even with high pile-up condition.

 $\rightarrow$  Good tracking performance can be kept at HL-LHC thanks to new technologies used in ITK.



## Expected physics performance (Higgs)

- The signal strength will be improved significantly, compared with results at LHC (ATL-PHYS-PUB-2014-016).
- The most of relative coupling ratio will be determined in accuracy of less than 10%.
   Expected uncertainties on Higgs couplings



#### Expected performance (SUSY-1)

- Scalar top is expected to be light (<1 TeV) with Higgs mass radiative correction.
- HL-LHC has sensitivity to stop mass >1.2 TeV with a stop decaying to a neutralino-1 and top in simplified model.
- ATL-PHYS-PUB-2013-011.



#### Expected performance (SUSY-2)

- If EW gaugino is dark matter, their mass is expected to be O(100 GeV)~O(1TeV).
- The sensitivity will be improved to ~250 GeV for neutralino and ~850 GeV for chargeno.
- ATL-PHYS-PUB-2014-010





 $\tilde{\chi}_1^{\pm}$ 

 $\tilde{\chi}_{2}^{0}$ 

### Expected physics performance (Exotic)

- HL-LHC will also improve sensitivity to exotic processes in BSM.
- ATL-PHYS-PUB-2013-003
- The studies with realistic detector configuration just started for different exotic physics modes.



#### Summary & Conclusions

- ATLAS has been operated in stable condition even at higher luminosity of LHC design value.
- The tracking performance was improved significantly in Run-2 with the new innermost layer, IBL.
- A lot of physics results at 13 TeV are being published with larger integrated luminosity.
- HL-LHC is planned to start in 2026 and the integrated luminosity of 3000 fb<sup>-1</sup> will be provided.
- ATLAS inner trackers will be replaced by new silicon detectors (ITK: Pixel and Strip) to cope with high luminosity at HL-LHC.
- ATLAS experiment will keep to provide hint or indication of physics beyond the standard model.