Geant4 Physics Update

presentation at AWLC17

Dennis Wright 26 June 2017

Outline

- Geant4 kernel notes
- Electromagnetic physics updates
- Hadronic physics updates
- Results from calorimeter simulations

Geant4 Kernel

Geometry

Geometrical primitives - USolids

- AIDA Unified Solids library update
 - As optional component, for replacing the original solids (G4GEOM USE USOLIDS flag)
 - Was embedded in 10.0 inside geometry module; can be adopted as external separate library in 10.1
 - Going to evolve with new and even more optimised implementations from VecGeom
- Optimised implementation and bug fixes for several shapes
 - UPolycone in particular
 - Included new shapes
 - UExtrudedSolid, UGenericTrap, Utrap
 - New UMultiUnion structure
 - Replaces multiple use of 'binary' Boolean unions for volumes with same material
 - Benefits above 3-4 components
 - Supported in GDML, version 3.1.1

Please, try it out and give us your feedback!

14 January 2015

G.Cosmo - Geant4 release 10.1 highlights - kernel modules

USolids Geometry

- Now fully incorporated into Geant4 geometry
 - G4Box \rightarrow G4UBox
 - G4Tubs → G4UTubs
 - G4Cons → G4UCons
 - G4Sphere \rightarrow G4USphere
 - G4Trap → G4UTrap
 - and more
- Can make straight substitution in your geometry
 - expect to see speed-up
- Will eventually be replaced with VecGeom solids
 - external library for this now available

Other Geometry Items

- G4ScaledSolid
 - can scale any solid in x, y, z or any combination of these
- New minor release of GDML schema: GDML-3.1.4
 - fully compatible with old schema versions
 - supports scaled solids

C++11

- Compilation using C++ 11 standard is now the default. Compilers must support:
 - null pointers
 - range-based for loops
 - uniform initialization
 - automatic type definition
 - and more
- Gradual migration of Geant4 code underway
 - C++11 features make multi-thread coding easier

Electromagnetic Physics

Multiple Coulomb Algorithm

Legend

- True path length : t
- Longitudinal or geometrical displacement : z
- Lateral displacement : r
- Angular deflection : (θ, Φ)

Improvements in lateral displacement sampling

recent addition of Goudsmit-Saunderson model showed significant improvement in this area

improved sampling in Urban model followed \rightarrow EM shower shapes improved

Bremsstrahlung and Improved LPM effect

Effect on shower shapes seems to be small (parts per thousand)

Hadronic Physics

Nuclear De-excitation

- Close to completing photon evaporation with correlated gamma emission
 - keep track of nuclear polarization from transition to transition
 - use transition angular momentum to provide correlation and angular distribution of gammas
 - could affect low energy part of EM shower shapes, as previous model had only isotropic gamma distributions
- New photon evaporation database required
 - PhotonEvaporation5.0
 - contains J^{π} information for each gamma level

Bertini Cascade

- Kaon extension to 30 GeV
 - added 8- and 9-body final state channels to get to higher energy
 - practical limit to approach of embedding elementary interaction in nucleus
- Coalescence model
 - now that Bertini is used up to 9 GeV, much more memory used -> coalescence mode is culprit
 - remove storage of intermediate nucleon combinations -> memory use back to normal
 - shower shapes narrower, though

Bertini Cascade

- Equilibrium evaporator model
 - handles low energy emission of nucleons from de-exciting nucleus
 - nominally based on Dostrovsky model
- A more faithful implementation of Dostrovsky results in fewer neutrons evaporated
 - partially solves long-standing problem of too many low energy neutrons in Bertini

Low Energy Neutron Production in Bertini (old)

Low Energy Neutron Production in Bertini (new)

INCL++ Cascade

- More detailed alternative to Bertini
 - includes delta resonances in cascade
 - takes more time, though
- Extended to include eta and omega meson production
- In process of extending to kaons
- Physics lists using this model are available for use
 - FTFP_INCLXX_HP similar to FTFP_BERT_HP (or Shielding)

High Energy Models

- Recent analysis by ATLAS and CMS has shown a shift in ratio of simulated to measured response at jet energy scale
 - between Run 1 (8 TeV) with G4 9.4 and Run 2 (13 TeV) with G4 9.6
- FTF and Bertini used by both ATLAS and CMS physics lists
 - despite many changes to Bertini, little effect on showers
 - FTF is now the suspect
- Created new physics list for ATLAS
 - transition from BERT to FTF moved from [4–5] GeV to [4-9] GeV
 - restores some lost shower width
 - wait to see results of new ATLAS analysis

Problem at the Jet Energy Scale

FTF Model

- Has been the "go-to" model for high energies
- Work continues by Vladimir Uzhinsky and Alberto Ribon
 - new hadron fragmentation functions, other physics improvement
 - parameter tuning, such as mean P_t
- However, may have reached point of diminishing returns
 - still small improvements in agreement with thin target data
 - but departures from calorimeter data
 - now using Bertini at higher energies (up to 9 GeV) to get better agreement with hadronic showers
 - time to go to a more theory-driven model?

QGS Improvements

- QGS has lain dormant for many years
- Work resumed (by Vladimir Uzhinsky) because
 - model is more theoretically based
 - can be extended to much higher energies (multi-Tev)
 - FTF model may be reaching its limits
- Changes
 - use constituent quark masses (instead of massless)
 - Pomeron and Reggeon parameters set up according to Kaidalov and Poghosyan
 - quark exchange improved
 - some parameter tuning

QGSPP: 31GeV/c p+C -> p

ParticleHP

- NeutronHP has been merged with its analogue for high precision charged particle interactions, ParticleHP
 - now handles n, p, d, t, α
 - new code is ParticleHP, but NeutronHP kept for backward compatibility
 - mostly for E < 20 MeV, but some data up to 200 MeV
- Database
 - G4NDL4.5 now required
 - to reduce size data files stored in zlib format
 - code automatically unpacks this, but to get human readable data, you need to run zlib (http://www.zlib.net)

ParticleHP – Problems Solved

- Reproducibility now restored in multithreaded running
 - Release 10.2
- Large memory consumption problem solved
 - Release 10.3

GND/GIDI/LEND

- Generalized Nuclear Data (GND)
 - new low energy particle database with more modern, rationalized format
 - includes all ENDF/B-VII data
 - upgrade of Generalized Interaction Data Interface (GIDI) used to access new GND format
- Can already try the new data
 - use G4LEND neutron models
 - or G4HadronElasticPhysicsLEND physics constructor
 - need to download data from ftp: //gdo-nuclear.ucllnl.org/pub

Simplified Calorimeter Results $(\pi^{-} beams)$

Scint/Fe Cal. Results: resolution

LAr/Pb Cal. Results: resolution

Scint/Fe Cal. Results: lateral shape

LAr/Pb Cal Results: lateral shape

Scint/Fe Cal. Results: longitudinal shape

Scint/Fe Cal. Results: visible energy

LAr/Pb Cal. Results: visible energy

Conclusion from Calorimeter Simulations

- From Geant4 9.6 to 10.3 we see small but steady improvements
 - better resolution in 10.3
 - with new transition region between Bertini and FTF models, showers are smoother and a little wider below 10 GeV
- WRT Calice
 - not expecting large changes relative to Calice Fe/Scint paper (arXiv: 1412.2653)
 - some changes expected for Si/W detector in 10.3: wider showers between 4 and 10 GeV → closer to arXiv:1411.7215
- Some problems in 10.2 with W